
QUESTION ANSWERING, GROUNDING, AND GENERATION FOR VISION
AND LANGUAGE

Licheng Yu

A thesis submitted to the faculty at the University of North Carolina at Chapel Hill in partial
fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of

Computer Science.

Chapel Hill
2019

Approved by:

Tamara L. Berg

Mohit Bansal

Alexander C. Berg

Ron Alterovitz

Dhruv Batra

© 2019
Licheng Yu

ALL RIGHTS RESERVED

ii

ABSTRACT

Licheng Yu: Question Answering, Grounding, and Generation for Vision and Language
(Under the direction of Tamara L. Berg)

One ultimate goal of AI is to develop an artificial intelligent (AI) system that can commu-

nicate with people in a natural way. Such communication includes but is not limited to asking

we humans questions, answering our questions, conducting dialogue with human beings, and

performing some actions to better serve people. Imagine in the future where the service robot is

everywhere, and we could ask our home robot to “grab me the red cup on the table.” To perform

this command, the AI system needs to understand this spoken English sentence, perceive the vi-

sual world, navigate to the right place “table”, recognize the right object “the red cup”, then grab

it and finally return it back to the commander. Just for this single command, it already involves

many techniques, such as speech recognition, language understanding, scene understanding, em-

bodied navigation, object recognition, pose estimation, robot manipulation, etc. Each of these

techniques are not well solved yet, but we are on a rapid way toward the success. This thesis is

in advancing our knowledge to explore various connections between vision, language and even

beyond to push forward this ultimate goal. We study 3 popular vision and language tasks, in-

cluding visual question answering, language grounding, and image-to-text language generation.

Inside each, we will introduce our proposed novel task, accompanied with high-quality dataset

and well-performing data-driven approaches.

Specifically, we first introduce Visual Madlibs for image-based and region-based question an-

swering. Then we introduce referring expressions, where we study both referring expression com-

prehension and generation, covering both language grounding and generation. Next, we study

album summarization, which not only selects the key photos inside an album but also generates

a natural language story describing the whole album. Last but not least, we describe multi-target

iii

embodied question answering, a task that is even closer to our ultimate goal that requires both

language understanding and navigation ability from the AI system.

iv

ACKNOWLEDGEMENTS

I always talk with my families and friends how lucky I am as a PhD student, because I met

a great professor who is my advisor - Tamara L. Berg. I really want to thank Tamara for giving

me the chance working with her. She has so many brilliant ideas, teaches me with patience, and

encourages me when I get stuck in research, for many years. I feel proud to be her student.

I also want to thank Mohit Bansal, who contributed in shaping me as a better research. We

have been working together for 3 years and I learned a lot from him within this period. Mohit

also helps me building academia connections with other researchers and gives me career advice. I

really appreciate all kinds of help from him.

Also many thanks to the professors and teachers during my PhD study. Special thanks to Alex

Berg who collaborated with me in the very beginning of my PhD study. I quite like Alex’s jokes

which might not be easy to understand in the beginning but would be very interesting after think-

ing a while. Chatting with him is always fun and helpful to me. I also want to thank Vladimir

Jojic for so well-prepared Machine Learning class. Thanks to Marc Niethammer for the useful

optimization course. Thanks to Shahriar Nirjon for the hands-on teaching of mobile computing.

I coded my first AI-based Go-Bang Android App in his course, which is very cool. Thanks to

Ron Alterovitz for teaching me in the Robotics class. I learned a lot from this class and made a

cool project in this class - Speech-driven Manipulation Robot, which I feel quite proud of and

always demonstrated in my talk. Also thanks Ron for being my committee member. Thanks

to Jan-Michael Frahm for teaching me 3D vision, broadening me the horizon of understanding

computer vision.

I also want to thank all my outside mentors from industry. I am thankful to my collaborators

at eBay Research Labs, especially to Robinson Piramuthu and Hadi Kiapour. This is my first

summer (in 2016) internship and thanks to them for letting me touch the industry-scale data and

v

real problem. I also want to thank Zhe Lin, Xiaohui Shen, and Jimei Yang for tutoring me at

Adobe Research in 2017 summer. We worked together to make a breakthrough on the referential

segmentation project with a huge performance boost. I also want to thank my Facebook AI Re-

search collaborators - Dhruv Batra, Xinlei Chen and Georgia Gkioxari. Dhruv helped me define

my summer project in a very clear way and tutored me working toward the final goal without

detouring. Xinlei discussed with me delving into each detail of my project. Georgia helped me a

lot on the paper writing.

Thanks also to all my labmates at UNC, who have made my life easier in my PhD study, in-

cluding: Jie Lei, Hao Tan, Qiuyu Xiao, Hongkun Ge, Dong Nie, Zhen Wei, Yipin Zhou, True

Price, Wei Liu, Xufeng Han, Patrick Poirson, Phil Ammirato, Eunbyung Park, Sirion Vittayakorn,

Cheng-Yang Fu, Hadi Kiapour, Dinghuang Ji, Jared Heinly, Ke Wang, Akash Bapat, Yixin Nie,

Mengyu Fu, Haonan Chen and Hao Jiang. Special thanks to Shan Yang, who has always been

supporting me in every aspect of my life. I could not get through all difficulties without her ac-

company during my PhD study.

I also want to thank my external friends: Xin Wang, Ronghang Hu and Bichen Wu from UC

Berkeley; Zhe Gan and Hongteng Xu from Duke; Zhuoyuan Chen, Kan Chen, and Yuxin Wu

from Facebook; Yuting Zhang from Amazon; Chen Sun, Fan Yang, and Lu Jiang from Google;

Yuke Zhu from Stanford; and my Shanghai Jiaotong University alumni - Yin Li, Yi Xu, Chao Ma,

Xiaokang Yang, Dian Li, Feiya Chen, Eryue Chen, Ruotian Luo, Zhaowen Wang, Bo Xiao, Liwei

Wang, Junchi Yan, Jinghui Zhang; and my all-time childhood friends - Minyu Liu, Chen Shen,

Zheming Jin, Zhichun Xiong, and Yiqin Gong who teaches me “Learn to Fail or Fail to Learn.”

Thanks to my parents and my grandparents. I am here getting my PhD degree due to their

constant strong support. Especially, I want to thank my grandfather, who was the first-generation

computer science professional in China, back to 1970s. He advised me to be a good researcher,

as well as a good person.

vi

TABLE OF CONTENTS

LIST OF TABLES . xi

LIST OF FIGURES . xiii

CHAPTER 1: INTRODUCTION . 1

CHAPTER 2: VISUAL MADLIBS . 4

2.1 Introduction . 4

2.2 Related Work . 6

2.3 Designing Visual Madlibs. 8

2.3.1 Data Collection . 10

2.4 Tasks: Multiple-choice question answering and targeted generation 11

2.5 Analyzing the Visual Madlibs Dataset . 13

2.5.1 Quantifying Visual Madlibs responses . 14

2.5.2 Visual Madlibs vs general descriptions . 15

2.6 Experiments . 18

2.6.1 Discussion of results . 22

CHAPTER 3: REFERRING EXPRESSION GENERATION AND COMPREHENSION . . 23

3.1 Two Tasks . 23

3.2 Referring Expression Datasets . 24

3.3 Modeling Context in Referring Expressions . 26

3.3.1 Baselines . 27

3.3.2 Visual Comparison . 28

3.3.3 Joint Language Generation . 30

vii

3.3.4 Experiments . 31

3.3.4.1 Analysis Experiments . 32

3.3.4.2 Referring Expression Comprehension . 33

3.3.4.3 Referring Expression Generation . 34

3.4 A Joint Speaker-Listener-Reinforcer Model for Referring Expressions 37

3.4.1 Model . 37

3.4.1.1 Speaker . 38

3.4.1.2 Listener . 39

3.4.1.3 Reinforcer . 40

3.4.1.4 Joint Model . 41

3.4.1.5 Comprehension and Generation . 42

3.4.2 Experiments . 43

3.4.2.1 Comprehension Task . 43

3.4.2.2 Generation Task . 47

3.5 Modular Attention Network for Referring Expression Comprehension 49

3.5.1 Model . 51

3.5.1.1 Language Attention Network . 52

3.5.1.2 Visual Modules . 53

3.5.1.3 Loss Function . 58

3.5.2 Experiments . 58

3.5.2.1 Results: Referring Expression Comprehension 58

3.5.2.2 Segmentation from Referring Expression . 62

CHAPTER 4: ALBUM SUMMARIZATION AND STORYTELLING . 64

4.1 Introduction . 64

4.2 Related Work . 66

4.3 Model . 67

viii

4.3.1 Album Encoder . 67

4.3.2 Photo Selector . 68

4.3.3 Story Generator . 69

4.4 Experiments . 70

4.4.1 Story Generation . 70

4.4.2 Album Summarization . 71

4.4.3 Output Example Analysis . 72

4.4.4 Album Retrieval . 72

CHAPTER 5: MULTI-TARGET EMBODIED QUESTION ANSWERING 75

5.1 Introduction . 75

5.2 Related Work . 78

5.3 Multi-Target EQA Dataset . 80

5.3.1 Multi-Target EQA Generation . 81

5.4 Model . 84

5.4.1 Program Generator . 84

5.4.2 Navigator. 85

5.4.3 Controller . 87

5.4.4 VQA Module . 88

5.4.5 Training . 88

5.5 Experiments . 89

5.5.1 Evaluation Setup and Metrics . 90

5.5.2 EQA Results . 91

5.5.3 Oracle Comparisons . 93

CHAPTER 6: DISCUSSION AND FUTURE WORK . 95

6.1 Summary of Contributions . 95

6.2 Future Directions . 95

ix

REFERENCES . 97

x

LIST OF TABLES

Table 2.1 – All 12 types of Madlibs instructions and prompts. 9

Table 2.2 – Accuracies computed for different approaches on the easy and hard multiple-
choice answering task, and the filtered hard question set. 19

Table 2.3 – Multiple-choice answering using automatic detection for 42 object/per-
son categories. 20

Table 2.4 – BLEU-1 and BLEU-2 computed on Madlibs testing dataset for different
approaches. 21

Table 3.1 – 4 referring expression datasets that use realistic images. 26

Table 3.2 – Expression Comprehension accuracies on RefCOCO and RefCOCO+ of
the Baseline model with differenct context source. 31

Table 3.3 – Referring Expression comprehension results on the RefCOCO, RefCOCO+,
and RefCOCOg datasets. 34

Table 3.4 – Referring Expression Generation Results: Bleu, Rouge, Meteor evalua-
tions for RefCOCO, RefCOCO+ and RefCOCOg. 35

Table 3.5 – Human Evaluations on referring expression generation. 35

Table 3.6 – Fraction of images for which the algorithm generates the same referring
expression for multiple objects. Smaller is better. 36

Table 3.7 – Ablation study using the speaker module for the comprehension task. 44

Table 3.8 – Ablation study using listener or ensembled listener+speaker modules for
the comprehension task. 45

Table 3.9 – Ablation study for generation using automatic evaluation. 47

Table 3.10 –Human Evaluations on generation. 47

Table 3.11 –Comparison with state-of-the-art approaches on ground-truth MS COCO
regions. 58

Table 3.12 –Ablation study of MAttNet using different combination of modules. The
feature used here is res101-frcn. 59

xi

Table 3.13 –Ablation study of MAttNet on fully-automatic comprehension task using
different combination of modules. 59

Table 3.14 –Comparison of segmentation performance on RefCOCO, RefCOCO+, and
our results on RefCOCOg. 62

Table 4.1 – Story generation evaluation. 70

Table 4.2 – Human evaluation showing how often people prefer one model over the
other. 70

Table 4.3 – Album summarization evaluation. 71

Table 4.4 – 1000 album retrieval evaluation. 71

Table 5.1 – Question types and the associated templates used in EQA-v1 and MT-EQA.
. 80

Table 5.2 – Functional forms of all question types in the MT-EQA dataset. 81

Table 5.3 – EQA (test) accuracy using questions and priors. 82

Table 5.4 – MT-EQA executable programs. 84

Table 5.5 – Quantitative evaluation of object/room navigation and EQA accuracy for
different approaches. 91

Table 5.6 – EQA accuracy on each question type for different approaches. 91

Table 5.7 – EQA accuracy of different approaches on each question type in oracle set-
ting (given shortest path or best-view images). 91

xii

LIST OF FIGURES

Figure 2.1 – An example from the Visual Madlibs Dataset. 5

Figure 2.2 – COCO instance annotation and descriptions for the image of Fig. 2.1 10

Figure 2.3 – Madlibs description. 12

Figure 2.4 – Top-5 most frequent phrase templates for Madlibs. 14

Figure 2.5 – Template used for parsing person’s attributes, activity and interaction with
object, and object’s attribute. 15

Figure 2.6 – Frequency that a word in a position in the people and object parsing tem-
plate in one dataset is in the same position for the other dataset. 16

Figure 2.7 – The accuracy of Madlibs, MS COCO and CNN+LSTM used as references
to answer the Madlibs. 17

Figure 2.8 – Example question-answering results from nCCA. 21

Figure 3.1 – Example images and referring expressions from RE datasets. 26

Figure 3.2 – Framework for modeling context in referring expressions. 27

Figure 3.3 – Comprehension accuracies on RefCOCO and RefCOCO+ datasets with
context modeling. 32

Figure 3.4 – Referring expression generation on RefCOCO by different methods. 36

Figure 3.5 – Framework for the joint speaker-listener-reinforcer model. 38

Figure 3.6 – Example comprehension results based on detection using joint speaker-
listener-reinforcer. 46

Figure 3.7 – Joint generation examples using “speaker+listener+reinforcer+MMI+rerank”. . . 48

Figure 3.8 – Modular Attention Network (MAttNet). 50

Figure 3.9 – Language Attention Network. 52

Figure 3.10 –Subject Module . 54

Figure 3.11 –Location Module . 56

Figure 3.12 –Relationship Module . 57

xiii

Figure 3.13 –Examples of fully automatic comprehension using MAttNet. 60

Figure 3.14 –Examples of incorrect comprehensions. Red dotted boxes show our wrong
prediction. 61

Figure 3.15 –Examples of fully-automatic MAttNet referential segmentation. 63

Figure 4.1 – Album Summarization and Storytelling Model . 66

Figure 4.2 – Examples of album summarization and storytelling by enc-attn-dec, h-
attn-rank, and ground-truth. 73

Figure 4.3 – More examples of album summarization and storytelling by different ap-
proaches. 74

Figure 5.1 – Difference between EQA-v1 and MT-EQA. 76

Figure 5.2 – Program Generator. 78

Figure 5.3 – IOU between the target’s mask and the centered rectangle mask. 83

Figure 5.4 – Overview of MT-EQA dataset including split statistics and question type
distribution. 83

Figure 5.5 – Model architecture: our model is composed of a program generator, a
navigator, a controller, and a VQA module. 85

Figure 5.6 – Navigator and Controller. 86

xiv

CHAPTER 1: INTRODUCTION

One ultimate goal of artificial intelligence (AI) is to build an AI agent that can listen, see,

talk, and even act, to better serve us. Perhaps one bright future application is home service robot.

With such robot, we could ask it to perform a job that is distant or repetitive. For example, we

could ask such robot to “grab me the green bottle on the table.” Ideally, the robot follows this

command and perform this task in a fully automatic manner. Such application could be poten-

tially very helpful for those impaired or old people. However, just for this single command, it

already involves quite a few cutting-edge techniques, including speech recognition to convert this

command into readable text, language understanding so that the robot can do semantic role label-

ing and know the required action is “grab”, the source “bottle” and the target is “me”, embodied

navigation to move to the table, object recognition to find “the green bottle”, pose estimation to

get the bottle’s 3-D position, motion planning to grab it, and finally return it back to “me”. Each

of the above sub-tasks is challenging and has not been well addressed yet. In this thesis, we focus

on the initialization stage of this example, which is the vision and language understanding for

human-robot interaction.

The early vision and language problem was proposed in Farhadi et al. (2010) and Kulkarni

et al. (2013) for image captioning task back to 2010. These datasets are typically of fairly small

size Farhadi et al. (2010) and the sentences being generated are hand-crafted with predefined

templates. Since AlexNet Krizhevsky et al. (2012) was introduced in 2012, we are witnessing a

breakthrough in the field of both computer vision and natural language processing. Such success

is mainly due to three aspects - bigger data, stronger computation power, and deep learning algo-

rithms. Since then, we have seen the rise of multi-modal tasks combining vision and language.

For example, Vinyals et al. (2015b) generates human-like captions from images, Anderson et al.

1

(2018a) automatically answers free-form questions based on images, Yu et al. (2018) localizes

objects mentioned by a human description, etc. We also extend the study to understanding video

and language, e.g., Krishna et al. (2017) detects dense events and generates captions for each

of them from a video, Lei et al. (2018) does question-answering based on video clips and subti-

tles, Hendricks et al. (2017) localizes key moments based on natural descriptions, etc.

My PhD starts from 2014, which is roughly the start of applying deep learning onto vision

and language, and thus most of my work lies in large-scale multi-modality tasks that are ad-

dressed with deep learning approaches. Specifically, my collaborators and I studied visual ques-

tion answering, language grounding, image-to-text generation, and embodied AI. We proposed

novel task in each of these research topics and achieved state-of-the-art performance on them.

In this thesis, we first introduce visual question answering. We collected a dataset called Vi-

sual Madlibs Yu et al. (2015). The Visual Madlibs consists of 360,001 focused natural language

descriptions for 10,738 images. It is collected using automatically produced fill-in-the-blank tem-

plates designed to gather targeted descriptions about: people and objects, their appearances, ac-

tivities, and interactions, as well as inferences about the general scene or its broader context. We

provide several analyses of our Visual Madlibs dataset and demonstrate its applicability to two

new description generation tasks: focused description generation, and multiple-choice question-

answering for images. Respectively, we use joint-embedding method for the multiple-choice task

and deep-learning based method for image description generation.

We then study referring expressions. Referring expressions are natural language construc-

tions used to identify particular objects within a scene. We collected two datasets based on MS

COCO Lin et al. (2014) images - RefCOCO and RefCOCO+ Yu et al. (2016b). Based on the

datasets, we explore generating and comprehending natural language referring expressions for

objects in images, where the generation task is to generate a sentence describing a target object

and the comprehension task is to localize the object given a natural description. Then we pro-

posed three works to address the two tasks. The first work Yu et al. (2016b) models visual and

language context for referring expression comprehension and generation, the second work Yu

2

et al. (2017b) unifies the role of speaker (for generation) and listener (for comprehension) by a

joint learning, and the third work Yu et al. (2018) proposed a neural module network to structure

the input sentence and do modular comprehension for better performance.

Besides generating natural description from single image or single region, we also explore

the album summarization and storytelling Yu et al. (2017a). This is a more challenging problem,

requiring us to identify the most representative photos and then generate stories from those sum-

mary photos. For this task, we make use of the Visual Storytelling dataset Huang et al. (2016)

and a model composed of three hierarchically-attentive Recurrent Neural Nets (RNNs) to: encode

the album photos, select representative (summary) photos, and compose the story. Automatic and

human evaluations show our model achieves better performance on selection, generation, and

retrieval than baselines.

Last but not least, we seek to apply vision and language into a more realistic task - embodied

AI, where an agent is required to explore and navigate inside a house based on its first-person

view. To study an overall performance of understanding language and doing navigation, we pro-

pose a novel task called multi-target embodied question answering Yu et al. (2019). we study

the questions that have multiple targets in them, such as “Is the dresser in the bedroom bigger

than the oven in the kitchen?”, where the agent has to navigate to multiple locations (“dresser in

bedroom”, “oven in kitchen”) and perform comparative reasoning (“dresser” bigger than “oven”)

before it can answer a question. Such questions require the development of entirely new mod-

ules or components in the agent. We propose a modular architecture composed of a program

generator, a controller, a navigator, and a VQA module to address this challenging task.

With all the above mentioned abilities together, including visual question answering, image(s)-

to-text generation, object localization from natural description, and embodied navigation, we

could easily initialize a human-computer interaction task, by talking to a robot and letting it to

localize the target object and move toward it.

3

CHAPTER 2: VISUAL MADLIBS

2.1 Introduction

Much of everyday language and discourse concerns the visual world around us, making un-

derstanding the relationship between the physical world and language describing that world an

important challenge problem for AI. Understanding this complex and subtle relationship will

have broad applicability toward inferring human-like understanding for images, producing nat-

ural human robot interactions, and for tasks like natural language grounding in NLP. In com-

puter vision, along with improvements in deep learning based visual recognition, there has been

an explosion of recent interest in methods to automatically generate natural language descrip-

tions for images Chen and Lawrence Zitnick (2015); Fang et al. (2015); Karpathy and Fei-Fei

(2015); Vinyals et al. (2015b); Kiros et al. (2014); Lebret et al. (2015) or videos Venugopalan

et al. (2014); Donahue et al. (2015). However, most of these methods and existing datasets have

focused on only one type of description, a generic description for the entire image.

In this work, we collect a new dataset of focused, targeted, descriptions, the Visual Madlibs

dataset Yu et al. (2015), as illustrated in Figure 2.1. To collect this dataset, we introduce auto-

matically produced fill-in-the-blank templates designed to collect a range of different descrip-

tions for visual content in an image. For example, a user might be presented with an image and

a fill-in-the-blank template such as “The frisbee is [blank]” and asked to fill in the [blank] with a

description of the appearance of frisbee. Alternatively, they could be asked to fill in the [blank]

with a description of what the person is doing with the frisbee. Fill-in-the-blank questions can be

targeted to collect descriptions about people and objects, their appearances, activities, and inter-

actions, as well as descriptions of the general scene or the broader emotional, spatial, or temporal

4

Figure 2.1: An example from the Visual Madlibs Dataset. This dataset collects targeted descrip-
tions for people and objects, denoting their appearances, affordances, activities, and interactions.
It also provides descriptions of broader emotional, spatial and temporal context for an image.

context of an image. Using these templates, we collect a large collection of 360,001 targeted

descriptions for 10,738 images.

With this new dataset, we can develop methods to generate more focused descriptions. In-

stead of asking an algorithm to “describe the image” we can now ask for more focused descrip-

tions such as “describe the person”, “describe what the person is doing,“ or “describe the relation-

ship between the person and the frisbee.” We can also ask questions about aspects of an image

that are somewhat beyond the scope of the directly depicted content. For example, “describe

what might have happened just before this picture was taken.” or “describe how this image makes

you feel.” These types of descriptions reach toward high-level goals of producing human-like

visual interpretations for images.

5

In addition to focused description generation, we also introduce a multiple-choice question-

answering task for images. In this task, the computer is provided with an image and a partial

description such as “The person is [blank]”. A set of possible answers is also provided, one an-

swer that was written about the image in question, and several additional answers written about

other images. The computer is evaluated on how well it can select the correct choice. In this way,

we can evaluate performance of description generation on a concrete task, making evaluation

more straightforward. Varying the difficulty of the negative answers—adjusting how similar they

are to the correct answer—provides a nuanced measurement of performance.

For both the generation and question-answering tasks, we study and evaluate a recent state

of the art approach for image description generation Vinyals et al. (2015b), as well as a simple

joint-embedding method learned on deep representations. The evaluation also includes extensive

analysis of the Visual Madlibs dataset and comparisons to the existing MS COCO dataset of

natural language descriptions for images.

In summary, our contributions are:

1) A new description collection strategy, Visual Madlibs, for constructing fill-in-the-blank

templates to collect targeted natural language descriptions.

2) A new Visual Madlibs Dataset consisting of 360,001 targeted descriptions, spanning 12

different types of templates, for 10,738 images, as well as analysis of the dataset and comparisons

to existing MS COCO descriptions.

3) Evaluation of a generation method and a simple joint embedding method for targeted

description generation.

4) Definition and evaluation of generation and joint-embedding methods on a new task,

multiple-choice fill-in-the-blank question answering for images.

2.2 Related Work

Description Generation: Recently, there has been an explosion of interest in methods for

producing natural language descriptions for images or video. Early work in this area generally

6

explored two complementary directions. The first type of approach focused on detecting content

elements such as objects, attributes, activities, or spatial relationships and then composing cap-

tions for images Kulkarni et al. (2011); Yang et al. (2011); Mitchell et al. (2012); Farhadi et al.

(2010) or videos Krishnamoorthy et al. (2013) using linguistically inspired templates. The second

type of approach explored methods to make use of existing text either directly associated with an

image Feng and Lapata (2010); Aker and Gaizauskas (2010) or retrieved from visually similar

images Ordonez et al. (2011); Kuznetsova et al. (2012); Mason (2013).

With the advancement of deep learning for content estimation, there have been many ex-

citing recent attempts to generate image descriptions using neural network based approaches.

Some methods first detect words or phrases using Convolutional Neural Network (CNN) features,

then generate and re-rank candidate sentences Fang et al. (2015); Lebret et al. (2015). Other

approaches take a more end-to-end approach to generate output descriptions directly from im-

ages. Kiros et al. Kiros et al. (2014) learn a joint image-sentence embedding using visual CNNs

and Long Short Term Memory (LSTM) networks. Similarly, several other methods have made

use of CNN features and LSTM or recurrent neural networks (RNN) for generation with a va-

riety of different architectures Vinyals et al. (2015b); Karpathy and Fei-Fei (2015); Chen and

Lawrence Zitnick (2015). These new methods have shown great promise for image description

generation under some measures (e.g. BLEU-1) achieving near-human performance levels. We

look at related, but more focused description generation tasks.

Description Datasets: Along with the development of image captioning algorithms there

have been a number of datasets collected for this task. One of the first datasets collected for

this problem was the UIUC Pascal Sentence data set Farhadi et al. (2010) which contains 1,000

images with 5 sentences per image written by workers on Amazon Mechanical Turk. As the

description problem gained popularity larger and richer datasets were collected, including the

Flickr8K Rashtchian et al. (2010) and Flickr30K Young et al. (2014) datasets, containing 8,000

and 30,000 images respectively. In an alternative approach, the SBU Captioned photo dataset Or-

donez et al. (2011) contains 1 million images with existing captions collected from Flickr. This

7

dataset is larger, but the text tends to contain more contextual information since captions were

written by the photo owners. Most recently, Microsoft released the MS COCO Lin et al. (2014)

dataset. MS COCO contains 120,000 images depicting 80 common object classes, with object

segmentations and 5 turker written descriptions per image. These datasets have been one of the

driving forces in improving methods for description generation, but are currently limited to a

single description about the general content of an image. We make use of MS COCO data, ex-

tending the types of descriptions associated with images.

Question-answering: Natural language question-answering has been a long standing goal

of NLP, with commercial companies like Ask-Jeeves or Google playing a significant role in de-

veloping effective methods. Recently, embedding and deep learning methods have shown great

promise for question-answering Sukhbaatar et al. (2015); Bordes et al. (2014a,b). Lin et al. Lin

and Parikh (2015) take an interesting multi-modal approach to question-answering. A multiple-

choice text-based question is first constructed from 3 sentences written about an image; 2 of the

sentences are used as the question, and 1 is used as the positive answer, mixed with several neg-

ative answers from sentences written about other images. The authors develop ranking methods

to answer these questions and show that generating abstract images for each potential answer

can improve results. Note, here the algorithms are not provided with an image as part of the

question. Some recent work has started to look at the problem of question-answering for images.

Malinowski et al. Malinowski and Fritz (2014) combine computer vision and NLP in a Bayesian

framework, but restrict their method to scene based questions. Geman et al. Geman et al. (2015)

design a visual Turing test to test image understanding using a series of binary questions about

image content. We design more general question-answering tasks that allow us to ask a variety of

different types of natural language questions about images.

2.3 Designing Visual Madlibs

The goal of Visual Madlibs is to study targeted natural language descriptions of image con-

tent that go beyond describing which objects are in the image, and beyond generic descriptions

8

of the whole image. The madlibs begin with a dataset of images where the presence of some

objects have already been labeled. The prompts for the Madlibs-style fill-in-the-blank questions

are automatically generated based on image content, in a manner designed to elicit more detailed

descriptions of the objects, their interactions, and the broader context of the scene shown in each

image.

Visual Madlibs – Image+Instruction+Prompts+Blank: A single fill-in-the-blank ques-

tion consists of a prompt and a blank, e.g., Person A is [blank] the car. The implicit question is,

“What goes in the blank?”. This is presented to a person along with an image and instructions,

e.g., Describe the relationship between the indicated person and object. The same image and

prompt may be used with different instructions to collect a variety of description types.

Type Instruction Prompt #words

1. image’s scene Describe the type of scene/place shown in this picture. The place is a(n) . 4+1.45
2. image’s emotion Describe the emotional content of this picture. When I look at this picture, I feel . 8+1.14
3. image’s interesting Describe the most interesting or unusual aspect of this picture. The most interesting aspect of this picture is . 8+3.14
4. image’s past Describe what happened immediately before this picture was taken. One or two seconds before this picture was taken, . 9+5.45
5. image’s future Describe what happened immediately after this picture was taken. One or two seconds after this picture was taken, . 9+5.04
6. object’s attribute Describe the appearance of the indicated object. The object(s) is/are . 3.20+1.62
7. object’s affordance Describe the function of the indicated object. People could the object(s). 4.20+1.74
8. object’s position Describe the position of the indicated object. The object(s) is/are . 3.20+3.35
9. person’s attribute Describe the appearance of the indicated person/people. The person/people is/are . 3+2.52
10. person’s activity Describe the activity of the indicated person/people. The person/people is/are . 3+2.47
11. person’s location Describe the location of the indicated person/people. The person/people is/are . 3.20+3.04
12. pair’s relationship Describe the relationship between the indicated person and object. The person/people is/are the object(s). 5.20+1.65

Table 2.1: All 12 types of Madlibs instructions and prompts. Right-most column shows the
average number of words for each description (#words for prompt + #words for answer).

Instantiating Questions: While the general form of the questions for the Visual Madlibs

were chosen by hand, see Table 2.1, most of the questions are instantiated depending on a sub-

set of the objects present in an image. For instance, if an image contained two people and a dog,

questions about each person (question types 9-11 in Table 2.1), the dog (types 6-8), relationships

between the two people and the dog (type 12), could be instantiated. For each possible instanti-

ation, the wording of the questions might alter slightly to maintain grammatical consistency. In

addition to these types of questions that depend on the objects present in the image, other ques-

tions (types 1-5) can be instantiated for an image regardless of the objects present.

Notice in particular the questions about the temporal context – what might have happened

before or what might happen after the image was taken. People can make inferences beyond the

9

specific content depicted in an image. Sometimes these inferences will be consistent between

people (e.g., when what will happen next is obvious), and other times these descriptions may be

less consistent. We can use the variability of returned responses to select images for which these

inferences are reliable.

Asking questions about every object and all pairs of objects quickly becomes unwieldy as

the number of objects increases. To combat this, we choose a subset of objects present to use in

instantiating questions. Such selection could be driven by a number of factors. The experiments

in this work consider comparisons to existing, general, descriptions of images, so we instantiate

questions about the objects mentioned in those existing natural language descriptions. Whether

an object is mentioned in an image description can be viewed as an indication of the object’s

importance Berg et al. (2012).

Figure 2.2: COCO instance annotation and descriptions for the image of Fig. 2.1. We show how
we map labeled instances to the mentioned person and object in the sentence.

2.3.1 Data Collection

To collect the Visual Madlibs Dataset we use a subset of 10,738 human-centric images from

MS COCO, that make up about a quarter of the validation data Lin et al. (2014), and instantiate

fill-in-the-blank templates as described above. The MS COCO images are annotated with a list of

objects present in the images, segmentations for the locations of those objects, and 5 general natu-

ral language descriptions of the image. To select the subset of images for collecting Madlibs, we

start with the 19,338 images with a person labeled. We then look at the five descriptions for each

and perform a dependency parse De Marneffe et al. (2006), only keeping those images where a

word referring to a person (woman, man, etc. E.g., in Fig. 2.2, guys, men) is the head noun for

10

part of the parse. This leaves 14,150 images. We then filter out the images whose descriptions do

not include a synonym for any of the 79 non-person object categories labeled in the MS COCO

dataset. This leaves 10,738 human-centric images with at least one other object from the MS

COCO data set mentioned in the general image descriptions.

Before final instantiation of the fill-in-the blank templates, we need to resolve a potential

ambiguity regarding which objects are referred to in the descriptions. There could be several dif-

ferent people or different instances of an object type labeled in an image. It is not immediately

obvious which ones are described in the sentences. To address this assignment problem, we es-

timate the quantity of each described person/object in the sentence by parsing the determinant

(two men and a frisbee in Fig. 2.2), the conjunction (a man and a woman), and the singular/plural

form (dog, dogs). We compare this number with the number of annotated instances for each cate-

gory, and consider two possible cases: 1) there are fewer annotated instances than the sentences

describe, 2) there are more annotated instances than the sentences describe. It is easy to address

the first case, just construct templates for all of the labeled instances. For the second case, we

sort the area of each segmented instance, and pick the largest ones up to the parsed number for

instantiation. Using this procedure, we obtain 26,148 labeled object or person instances in the

10,738 images.

Each Visual Madlib is answered by 3 workers on Amazon’s Mechanical Turk. To date, we

have collected 360,001 answers to Madlib questions. Some example Madlibs answers are shown

in Fig. 2.3.

2.4 Tasks: Multiple-choice question answering and targeted generation

We design two tasks to evaluate targeted natural language description for images. The first

task is to automatically generate natural language descriptions of images to fill in the blank for

one of the Madlibs questions. This allows for producing targeted descriptions such as: a descrip-

tion specifically focused on the appearance of an object, or a description about the relationship

between two objects. The input to this task is an image, instructions, and a Madlibs prompt. As

11

Figure 2.3: Madlibs description. The first row corresponds to question types 1-5, the second row
corresponds to question types 9-11, and the third row is to question types 6-8 and question type
12. All question types are listed in Table 2.1.

has been discussed at length in the community working on description generation for images, it

can be difficult to evaluate free form generation. Our second task tries to address this issue by

developing a new targeted multiple-choice question answering task for images. Here the input

is again an image, instruction, and a prompt, but instead of a free form text answer, there are a

fixed set of multiple-choice answers to fill in the blank. The possible multiple-choice answers

are sampled from the Madlibs responses, one that was written for the particular image/instruc-

tion/prompt as the correct answer, and distractors chosen from either similar images or random

images depending on the level of difficulty desired. This ability to choose distractors to adjust

the difficulty of the question as well as the relative ease of evaluating multiple choice answers are

attractive aspects of this new task.

12

In our experiments we randomly select 20% of the 10,738 images to use as our test set for

evaluating these tasks. For the multiple-choice questions we form two sets of answers for each,

with one set designed to be more difficult than the other. We first establish the easy task distrac-

tor answers by randomly choosing three descriptions (of the same question type) from other

images Lin and Parikh (2015). The hard task is designed more delicately. Instead of randomly

choosing from the other images, we now only look for those containing the same objects as our

question image, and then arbitrarily pick three of their descriptions. Sometimes, the descriptions

sampled from “similar” images could also be good answers for our questions (later we experi-

ment with using Turkers to select less ambiguous multiple-choice questions from this set). For

the targeted generation task, for question types 1-5, algorithms generate descriptions given the

image, instructions, and prompt. For the other question types whose prompts are related to some

specific person or object, we additionally provide the algorithm with the location of each person-

/object mentioned in the prompt. We also experiment with estimating these locations using object

detectors.

2.5 Analyzing the Visual Madlibs Dataset

We begin by conducting quantitative analyses of the responses collected in the Visual Madlibs

Dataset in Sec. 2.5.1. A main goal is understanding what additional information is provided by

the targeted descriptions in the Visual Madlibs Dataset vs general image descriptions. The MS

COCO dataset Lin et al. (2014) collects general image descriptions following a similar method-

ology to previous efforts for collecting general image descriptions, e.g. Rashtchian et al. (2010);

Young et al. (2014). So, we provide further analyses comparing the Visual Madlibs to the MS

COCO descriptions collected for the same images in Sec. 2.5.2.

13

Pr
: N

P
VP

NP

Pr
: N

P
VP

Pr
: N

P
VP

PP
 N

P

Pr
: N

P
VP

ADVP

Pr
: N

P
VP

PR
T

NP
0

20%

40%

60%

80%

100%
One or two seconds after this

 picture was taken, ___ .

Pr:= NP PP NP VP O ___ O

Image's future

Pr
: V

P
ADJP

Pr
: V

P
NP

Pr
: V

P

Pr
: V

P
PP

 N
P

Pr
: V

P
ADVP

0

20%

40%

60%

80%

100%

The object(s) is/are [blank] .

Pr:= NP ___ O

Object's attribute

Pr
: V

P

Pr
: V

P
PP

Pr
: V

P
NP

PP

Pr
: V

P
NP

NP

Pr
: V

P
PP

 N
P

PP
0

20%

40%

60%

80%

100%

People could ___ the object(s) .

Pr:= NP ___ NP O

Object's affordance

Pr
: V

P
NP

Pr
: V

P

Pr
 V

P
PP

 N
P

Pr
: V

P
NP

PP
 N

P

Pr
: V

P
ADVP

0

20%

40%

60%

80%

100%

The person/people is/are ___ .

Pr:= NP ___ O

Person's activity

0 0.2 0.4 0.6 0.8 1.0
0

5%

10%

15%

20%

25% Image's future

0 0.2 0.4 0.6 0.8 1.0
0

5%

10%

15%

20%

25% Object's attribute

0 0.2 0.4 0.6 0.8 1.0
0

5%

10%

15%

20%

25% Object's affordance

0 0.2 0.4 0.6 0.8 1.0
0

5%

10%

15%

20%

25% Person's activity

Figure 2.4: First row shows top-5 most frequent phrase templates for image’s future, object’s
attribute, object’s affordance and person’s activity. Second row shows the histograms of similarity
between answers.

2.5.1 Quantifying Visual Madlibs responses

We analyze the length, structure, and consistency of the Visual Madlibs responses. First, the

average length of each type of description is shown in the far right column of Table 2.1. Note that

descriptions of people tend to be longer than descriptions of other objects in the dataset1.

Second, we use the phrase chunking Collobert et al. (2011) to analyze which phrasal struc-

tures are commonly used to fill in the blanks for different questions. Fig. 2.4, top row, shows

relative frequencies for the top-5 most frequent templates used for several question types. Object

attributes are usually described briefly with a simple adjectival phrase. On the other hand, people

use more words and a wider variety of structure to describe possible future events. Except for fu-

ture and past descriptions, the distribution of structures is generally concentrated on a few likely

choices for each question type.

Third, we analyze how consistent the Mechanical Turk workers’ answers are for each type

of question. To compute a measure of similarity between a pair of responses we use the cosine

similarity between representations of each response. A response is represented by the mean of the

Word2Vec Mikolov et al. (2013) vectors for each word in the response, following Lin and Parikh

1 Also note that the length of the prompts varies slightly depending on the object names used to instantiate the
Madlib, hence the fractional values in the mean length of the prompts shown in gray.

14

Figure 2.5: Template used for parsing person’s attributes, activity and interaction with object,
and object’s attribute. The percentages below compares Madlibs and MSCOCO on how frequent
these templates are used for description.

(2015); Lin et al. (2014). Word2Vec is a 300 dimensional embedding representation for words

that encodes the distributional context of words learned over very large word corpora. This mea-

sure takes into account the actual words used in a response, as opposed to the previous analyses

of parse structure. Each Visual Madlibs question is answered by three workers, providing 3 pairs

for which similarity is computed. Fig. 2.4, bottom row, shows a histogram of all pairwise similari-

ties for several question types. Generally the similarities have a normal-like distribution with an

extra peak around 1 indicating the fraction of responses that agree almost perfectly. Once again,

descriptions of the future and past are least likely to be (near) identical, while object attributes

and affordances are often very consistent.

2.5.2 Visual Madlibs vs general descriptions

We compare the targeted descriptions in the Visual Madlibs Dataset to the general image

descriptions in MS COCO. First, we analyze the words used in Visual Madlibs compared to MS

COCO descriptions of the same images. For each image, we extract the unique set of words from

all descriptions of that image from both datasets, and compute the coverage of each set with

respect to the other. We find that on average (across images) 22.45% of the Madlibs’s words are

also present in MSCOCO descriptions, while 52.38% of the COCO words are also present in

Madlibs.

15

Figure 2.6: Frequency that a word in a position in the people and object parsing template in one
dataset is in the same position for the other dataset.

Second, we compare how Madlibs and MS COCO answers describe the people and objects

in images. We observe that the Madlibs questions types, Table 2.1, cover much of the infor-

mation in MS COCO descriptions Lin et al. (2014). As one way to see this, we run the Stan-

fordNLP parser2 on both datasets. For attributes of people, we use the parsing template shown

in Fig. 2.5(a) to analyze the structures being used. The refer name indicates whether the person

was mentioned in the description. Note that the Madlibs descriptions always have one reference

to a person in the prompt (The person is [blank].). Therefore, for Madlibs, we report the presence

of additional references to the person (e.g., the person is a man). The general attribute directly

describes the appearance of the person or object (e.g., old or small); the affiliate object indi-

cates whether additional objects are used to describe the targeted person (e.g. with a bag, coat, or

glasses) and the affiliate attribute are appearance characteristics of those secondary objects (e.g.,

red coat). The templates for object’s attribute and verbs are more straightforward as shown in

Fig. 2.5(b)(c). The table in Fig. 2.5 shows the frequency of each parse component. Overall, more

of the potential descriptive elements in these constructions are used in response to the Madlibs

prompts than in the general descriptions found in MS COCO.

We also break down the overlap between Visual Madlibs and MS COCO descriptions over

different parsing templates for descriptions about people and object (Fig. 2.6). Yellow bars show

how often words for each parse type in MSCOCO descriptions were also found in the same parse

2 http://nlp.stanford.edu/software/lex-parser.shtml

16

http://nlp.stanford.edu/software/lex-parser.shtml

0 20% 40% 60% 80%

image's scene

image's emotion

image's interesting

image's past

image's future

object's attribute

object's affordance

object's position

person's attribute

person's activity

person's location

pair's relationship

Madlibs

MSCOCO

CNN+LSTM(COCO)

Figure 2.7: The accuracy of Madlibs, MS COCO and CNN+LSTM Vinyals et al. (2015b)(trained
on MS COCO) used as references to answer the Madlibs hard multiple-choice questions.

type in the Visual Madlibs answers, and green bars measure the reverse direction. Observations

indicate that Madlibs provides more coverage in its descriptions than MS COCO for all templates

except for person’s refer name. One possible reason is that the prompts already indicates “the

person” or “people” explicitly, so workers need not add an additional reference to the person in

their descriptions.

Extrinsic comparison of Visual Madlibs Data and general descriptions: Here we provide

an extrinsic analysis of the information available in the general descriptions compared to Vi-

sual Madlibs. We perform this analysis by using either: a) the MS COCO descriptions for an

image, or b) Visual Madlibs responses from other Turkers for an image, to select answers for our

multiple-choice evaluation task. Specifically, we use one of the human provided descriptions,

either from Madlibs or from MS COCO, and select the multiple-choice answer that is most sim-

17

ilar to that description. Similarity is measured as cosine similarity between the mean Word2Vec

vectors for the words a description compared to the Word2Vec vectors of the multiple-choice

answers. In addition to comparing how well the Madlibs or MS COCO descriptions can select

the correct multiple-choice answer, we also use the descriptions automatically produced by a

recent natural language generation system (CNN+LSTM Vinyals et al. (2015b), implementation

from Karpathy and Fei-Fei (2015)) trained on MS COCO dataset. This allows us to make one

possible measurement of how close current automatically generated image descriptions are to our

Madlibs descriptions. Fig. 2.7 shows the accuracies resulting from using Madlibs, MSCOCO, or

CNN+LSTM Vinyals et al. (2015b) to select the correct multiple-choice answer.

Although this approach is quite simple, it allows us we make two interesting observations.

First, Madlibs outperforms MS COCO on all types of multiple-choice questions. If Madlibs and

MS COCO descriptions provided the same information, we would expect their performance to be

comparable. Presumably the performance increase for Madlibs is due to the coverage of targeted

descriptions compared to MS COCO’s sentences that describe the overall image content more

generally. Second, the automatically generated descriptions from the pre-trained CNN+LSTM

perform much worse than the actual MS COCO descriptions, despite doing quite well on general

image description generation (The BLEU-1 score of CNN+LSTM, 0.67, is near human agree-

ment 0.69 on MS COCO Vinyals et al. (2015b)).

2.6 Experiments

We evaluate a series of methods on the Visual Madlibs Dataset for the targeted natural lan-

guage generation and multiple-choice question answering tasks, introduced in Sec. 2.4. As meth-

ods, we evaluate simple joint-embedding methods – canonical correlation analysis (CCA) and

normalized CCA (nCCA) Gong et al. (2014b) – as well as a recent deep-learning based method

for image description generation – CNN+LSTM Vinyals et al. (2015b). We train these models on

80% of the images in the MadLibs collection and evaluate their performance on the remaining

20%.

18

Easy Task

#Q CCA nCCA nCCA nCCA CNN+LSTM
(bbox) (all) (madlibs)

1. scene 6277 75.7% 86.8% − 87.6% 71.1%
2. emotion 5138 41.3% 49.2% − 42.4% 34.0%
3. past 4903 61.8% 77.5% − 80.3% 35.8%
4. future 4658 61.2% 78.0% − 80.2% 40.0%
5. interesting 5095 66.8% 76.5% − 78.9% 39.8%
6. obj attr 7194 44.1% 47.5% 54.7% 50.9% 45.4%
7. obj aff 7326 59.8% 73.0% 72.2% 76.7% −
8. obj pos 7290 53.0% 65.9% 58.9% 69.7% 50.9%
9. per attr 6651 40.4% 48.0% 53.1% 44.5% 37.3%
10. per act 6501 70.0% 80.7% 75.6% 82.8% 63.7%
11. per loc 6580 69.8% 82.7% 73.8% 82.7% 59.2%
12. pair rel 7595 54.3% 63.0% 64.2% 67.2% −

Hard Task

#Q CCA nCCA nCCA nCCA CNN+LSTM
(bbox) (all) (madlibs)

1. scene 6277 63.8% 70.1% − 68.2% 60.5%
2. emotion 5138 33.9% 37.2% − 33.2% 32.7%
3. past 4903 47.9% 52.8% − 54.0% 32.0%
4. future 4658 47.5% 54.3% − 53.3% 34.3%
5. interesting 5095 51.4% 53.7% − 55.1% 33.3%
6. obj attr 7194 42.2% 43.6% 49.8% 39.3% 40.3%
7. obj aff 7326 54.5% 63.5% 63.0% 48.5% −
8. obj pos 7290 49.0% 55.7% 50.7% 53.4% 44.9%
9. per attr 6651 33.9% 38.6% 46.1% 31.6% 36.1%
10. per act 6501 59.7% 65.4% 65.1% 66.6% 53.6%
11. per loc 6580 56.8% 63.3% 57.8% 62.6% 49.3%
12. pair rel 7595 49.4% 54.3% 56.5% 52.0% −

Filtered questions from Hard

#Q CCA nCCA nCCA nCCA CNN+LSTM
(bbox) (all) (madlibs)

1. scene 4940 70.4% 77.6% − 76.3% 66.3%
2. emotion 2052 43.2% 49.0% − 43.8% 34.0%
3. future 3820 51.4% 59.2% − 58.3% 33.3%
4. past 3976 51.0% 57.4% − 59.4% 31.1%
5. interesting 4159 56.1% 59.5% − 61.3% 35.4%
6. obj attr 5436 45.3% 47.2% 54.6% 42.8% 43.2%
7. obj aff 4581 61.2% 71.0% 70.5% 57.6% −
8. obj pos 5721 53.0% 60.2% 54.6% 57.7% 46.9%
9. per attr 4893 36.5% 42.4% 52.1% 34.4% 37.0%
10. per act 5813 62.0% 68.3% 67.9% 69.6% 54.8%
11. per loc 5096 63.1% 69.9% 62.6% 70.0% 51.2%
12. pair rel 5981 52.3% 57.6% 60.0% 56.5% −

Table 2.2: Accuracies computed for different approaches on the easy and hard multiple-choice
answering task, and the filtered hard question set. CCA, nCCA, and CNN+LSTM are trained on
the whole image representation for each type of question. nCCA(box) is trained and evaluated on
ground-truth bounding-boxes from COCO segmentations. nCCA(all) trains a single embedding
using all question types.

19

Easy Task Hard Task

#Q nCCA nCCA nCCA nCCA nCCA nCCA
(bbox) (dbox) (bbox) (dbox)

6. obj attr 2021 47.6% 53.6% 51.4% 43.9% 47.9% 45.2%
9. per attr 4206 50.2% 55.4% 51.2% 40.0% 47.0% 43.3%

Table 2.3: Multiple-choice answering using automatic detection for 42 object/person categories.
“bbox” denotes ground-truth bounding box and “dbox” denotes detected bounding box.

In our experiments we extract image features using the VGG Convolutional Neural Network

(CNN) Simonyan and Zisserman (2014). This model has been trained on the ILSVRC-2012

dataset to recognize images depicting 1000 object classes, and generates a 4,096 dimensional

image representation. On the sentence side, we average the Word2Vec of all words in a sentence

to obtain a 300 dimensional representation.

CCA is an approach for finding a joint embedding between two multi-dimensional variables,

in our case image and text vector representations. In an attempt to increase the flexibility of the

feature selection and for improving computational efficiency, Gong et al. Gong et al. (2014b) pro-

posed a scalable approximation scheme of explicit kernel mapping followed by dimension reduc-

tion and linear CCA. In the projected latent space, the similarity is measured by the eigenvalue-

weighted normalized correlation. This method, nCCA, provides high-quality retrieval results,

improving over the original CCA performance significantly Gong et al. (2014b).

We train CCA and nCCA models for each question type separately using the training portion

of the Visual Madlibs Dataset. These models allow us to map from an image representation,

to the joint-embedding space, to vectors in the Word2Vec space, and vice versa. For targeted

generation, we map an image to the joint-embedding space and then choose the answer from

the training set text that is closest to this embedded point. In order to answer a multiple-choice

question we embed each multiple choice answer, and then select the answer who’s embedding is

closest to image.

Following the recent “Show and Tell” description generation technique Vinyals et al. (2015b)

(using an implementation from Karpathy and Fei-Fei (2015)), we train a CNN+LSTM model

for each question type on the Visual Madlibs training set. This approach has demonstrated state

of the art performance on generating general natural language descriptions for images. These

20

Figure 2.8: Some example question-answering results from nCCA. First row shows correct
choices. Second row shows incorrect choices.

BLEU-1 BLEU-2
nCCA nCCA(bbox) CNN+LSTM nCCA nCCA(box) CNN+LSTM

1. scene 0.52 − 0.62 0.17 − 0.19
2. emotion 0.17 − 0.39 0 − 0
3. future 0.38 − 0.32 0.12 − 0.08
4. past 0.39 − 0.42 0.12 − 0.11
5. interesting 0.49 − 0.51 0.14 − 0.15
6. obj attr 0.28 0.36 0.45 0.02 0.02 0.01
7. obj aff 0.56 0.60 − 0.10 0.11 −
8. obj pos 0.53 0.55 0.71 0.24 0.25 0.50
9. per attr 0.26 0.29 0.55 0.06 0.07 0.25
10. per act 0.47 0.41 0.52 0.14 0.11 0.22
11. per loc 0.52 0.46 0.64 0.22 019 0.39
12. pair rel 0.46 0.48 − 0.07 0.08 −

Table 2.4: BLEU-1 and BLEU-2 computed on Madlibs testing dataset for different approaches.

models directly learn a mapping from an image to a sequence of words which we can use to

evaluate the targeted generation task. Note that we input the words from the prompt, e.g., The

chair is, and then let the CNN+LSTM system generate the remaining words of the description3.

For the multiple choice task, we compute cosine similarity between Word2Vec representations of

the generated description and each question answer and select the most similar answer.

3 The missing entries for questions 7 and 12 are due to this priming failing for a fraction of the questions.

21

2.6.1 Discussion of results

Table 2.2 shows accuracies of each algorithm on the easy and hard versions of the multiple-

choice task. Fig. 2.8, shows example correct and wrong answer choices. There are several inter-

esting observations we can make. First, training nCCA on all types of question together, labeled

as nCCA(all), is helpful for the easy variant of the task, however it is less useful on the “fine-

grained” hard version of the task. Second, extracting visual features from the bounding box of the

relevant person/object yields higher accuracy for predicting attributes, but not for other questions.

Based on this finding, we try answering the attribute question using automatic detection meth-

ods. The detectors are trained on ImageNet using R-CNN Girshick et al. (2014), covering 42 MS

COCO categories. We observe similar performance between ground-truth and detected bounding

boxes in Table 2.3.

As an additional experiment we ask humans to answer the multiple choice task, with 5 Turk-

ers answering each question. We use their results to filter out a subset of the hard multiple-choice

questions where at least 3 Turkers choose the correct answer. Results of the methods on this

subset are shown in Table 2.2 bottom set of rows. These results show the same pattern as on the

unfiltered set, with slightly higher accuracy.

Table 2.4 shows BLEU-1 and BLEU-2 scores for targeted generation. Although the CNN+LSTM

models we trained on Madlibs were not quite as accurate as nCCA for selecting the correct

multiple-choice answer, they did result in better, sometimes much better, accuracy (as measured

by BLEU scores) for targeted generation.

22

CHAPTER 3: REFERRING EXPRESSION GENERATION AND COMPREHENSION

While image description strives to construct broad descriptions of image content, referring

expressions are a more focused form of language, used to identify a particular object or person in

an image. People use such expressions all the time, especially in dialogue to indicate a particular

object or event to a co-observer, e.g. the woman in the blue shirt, or the green cup on the table.

Computational models that generate and comprehend such expressions have broad applicability

to human-computer interaction, especially for agents such as robots, interacting with people in

the real world. Successful models need to connect visual interpretations of objects in the world to

natural language that discriminatively describes an object.

In this chapter, we first define the two tasks, then discuss about how we collect the referring

expression dataset, and finally introduce 3 deep learning based approaches to address the two

tasks.

3.1 Two Tasks

For Referring Expressions (RE), there is a pragmatic interaction between agents that involves

two main tasks: a) a speaker task where one must generate a natural language expression given

a target and its surrounding world context; (b) a listener task where one must interpret and com-

prehend the expression and map it to the correct target. We refer to these two tasks as referring

expression generation and comprehension, respectively.

The comprehension task requires a system to select the region being described by a given

referring expression. To address this problem, Mao et al. (2016); Yu et al. (2016b); Nagaraja et al.

(2016); Hu et al. (2016b) model P (r|o) and looks for the object o maximizing the probability.

People also try modeling P (o, r) directly using embedding model Rohrbach et al. (2016a); Wang

23

et al. (2016), which learns to minimize the distance between paired object and sentence in the

embedding space.

The generation task asks a system to compose an expression for a specified object within

an image. While some previous work used rule-based approaches to generate expressions with

fixed grammar pattern Mitchell et al. (2013b); FitzGerald et al. (2013); Kazemzadeh et al. (2014),

recent work has followed the CNN-LSTM structure to generate expressions Mao et al. (2016); Yu

et al. (2016b).

3.2 Referring Expression Datasets

Some initial datasets in referring expression generation (REG) used graphics engines to pro-

duce images of objects van Deemter et al. (2006); Viethen and Dale (2008a) with corresponding

shared evaluation challenges Gatt and Belz (2009). Recently more realistic datasets have been

introduced, consisting of craft objects like pipecleaners, and ribbons Mitchell et al. (2010), or

everyday home and office objects such as staplers or combs Mitchell et al. (2013a), arrayed on

a simple background. These datasets helped move REG research into the domain of real world

objects.

In the past few years, datasets have become even larger and more realistic and expanded to

include video REs. The ReferIt Dataset Kazemzadeh et al. (2014) was perhaps the first large-

scale RE dataset to be based on complex real world scenes. The images used to construct this

dataset were originally sampled from the ImageCLEF IAPR image retrieval dataset Grubinger

et al. (2006), a large collection of scene images with associated object segmentations. The ReferIt

dataset was collected via a simple two-player online game (the ReferItGame) to crowdsource

REs. In this game, Player 1 is shown an image with a highlighted target object and asked to write

a natural language expression referring to the target. Player 2 is shown only the image and RE

and asked to click on the corresponding object. If the players do their job correctly, they receive

points and the expression is added to the dataset. This allows both data collection and verification

within the game.

24

Based on this game, we further collected the RefCOCO and RefCOCO+ datasets, building

on the MS COCO image collection Lin et al. (2014). In the RefCOCO dataset, no restrictions

are placed on the type of language used in the REs, while in the RefCOCO+ dataset players are

stopped from using location words in their REs by adding ‘taboo’ words to the ReferItGame.

Thus, RefCOCO+ tends to focus more on appearance based descriptions. Another dataset based

on MS COCO images has also been collected, called the RefCOCOg dataset Mao et al. (2016).

During collection of this dataset, one set of workers on Mechanical Turk were asked to write REs

for objects. Another set of workers were asked to click on the indicated object given an RE. In

Table 3.1, we show the statistics of each of the above-mentioned 4 datasets. REs in RefCOCO

and RefCOCO+ tend to contain fewer words than those in Refexp since the competitive and

time-based nature of games encourages players to write only the amount of information neces-

sary to convey the correct object to the other player. Refexp contains more caption-like REs with

many details about each referred object since labelers were encouraged to do so. Fig. 3.1 shows

example images and expressions. In this chapter, we evaluate our approaches on RefCOCO, Re-

fCOCO+, and RefCOCOg1, shows the advantages of our methods for both referring expression

generation and comprehension.

Besides, there are two types of splits of the data into train/test sets for RefCOCO and Ref-

COCO+: a per-object split and a people-vs-objects split. The first type is per-object split. In this

split, the dataset is divided by randomly partitioning objects into training and testing sets. This

means that each object will only appear either in training or testing set, but that one object from

an image may appear in the training set while another object from the same image may appear in

the test set. We use this split for RefCOCOg since same division was used in the previous state-

of-the-art approach Mao et al. (2016). The second type is people-vs-objects splits. One thing we

observe from analyzing the datasets is that about half of the referred objects are people. There-

fore, we create a split for RefCOCO and RefCOCO+ datasets that evaluates images containing

multiple people (testA) vs images containing multiple instances of all other objects (testB). In

1 Datasets and toolbox can be downloaded from https://github.com/lichengunc/refer

25

https://github.com/lichengunc/refer

man in the middle in yellow
man in the middle
front middle yellow guy

RefCOCO

man with hand up
man with scarf holding bar
man with plaid scarf

RefCOCO+ RefCOCOg

guy in grey shirt playing wii in
dark jeans
man in grey shirt and jeans

ReferIt

dude on right
man on the right

Figure 3.1: Example images and referring expressions from RE datasets.

this split all objects from an image will appear either in the training or testing sets, but not both.

This split creates a more meaningfully separated division between training and testing, allowing

us to evaluate the usefulness of context more fairly.

Table 3.1: 4 referring expression datasets that use realistic images.

Dataset #images #expressions collection way expression style
Referit 19.894 130,525 Referit Game Free style

RefCOCO 19,994 142,210 Referit Game Free style
RefCOCO+ 19,992 141,564 Referit Game Abs. Loc forbidden
RefCOCOg 104,560 26,711 Two rounds COCO-caption style

3.3 Modeling Context in Referring Expressions

In this section, we focus on incorporating better measures of visual context into referring

expression models and find that visual comparison to other objects within an image helps im-

prove performance significantly. We also develop methods to tie the language generation process

together, so that we generate expressions for all objects of a particular category jointly.

To investigate the context, we firstly implement several model variations for referring expres-

sion generation and comprehension. The baseline models are recent state of the art deep learning

approaches from Mao et al Mao et al. (2016). We use these as our baselines (Sec 3.3.1). Next, we

investigate incorporating better visual context features into the models (Sec 3.3.2). Finally, we

explore methods to jointly produce an entire set of referring expressions for all depicted objects

of the same category (Sec 3.3.3).

26

guy blowing the thing

right guy in blue jeans

christmas child

old man

LSTM

sitting back

CNN

Figure 3.2: Framework: We extract VGG-fc7 and location features for each object of the same
type, then compute visual differences. These features and differences are then fed into LSTM.
For sentence generation, the LSTMs are tied together, incorporating the hidden output difference
as additional information for predicting words.

3.3.1 Baselines

For comparison, we implement both the baseline and strong model of Mao et al Mao et al.

(2016). Both models utilize a pre-trained CNN network to model the target object and its con-

text within the image, and then use a LSTM for generation. In particular, object and context are

modeled as features from a CNN trained to recognize 1,000 object categories Simonyan and Zis-

serman (2014) from ImageNet Russakovsky et al. (2015). Specifically, the visual representation

is composed of:

• Target object representation, oi. The object is modeled as features extracted from the VGG-

fc7 layer by forwarding its bounding box through the network.

• Global context representation, gi. Context is modeled as features extracted from the VGG-

fc7 layer for the entire image.

• Location/size representation, li, for the target object. Location and size are modeled as a

5-d vector encoding the x and y locations of the top left and bottom right corners of the

target object bounding box, as well as the bounding box size with respect to the image, i.e.,

li = [xtl
W
, ytl
H
, xbr
W
, ybr
H
, w·h
W ·H].

27

Language generation is handled by a long short-term memory network (LSTM) Hochreiter

and Schmidhuber (1997) where inputs are the above visual features and the network is trained

to generate natural language referring expressions. In Mao et al’s baseline Mao et al. (2016), the

model uses maximum likelihood training and outputs the most likely referring expression given

the target object, context, and location/size features. In addition, they also propose a stronger

model that uses maximum mutual information (MMI) training to consider whether a listener

would interpret a referring expression unambiguously. They impose this by penalizing the model

if a generated referring expression could also be generated by some other object within the image.

We implement both their original model and MMI model in our experiments. We subsequently

refer to these two models as Baseline and MMI, respectively.

3.3.2 Visual Comparison

Previous works Brown-Schmidt and Tanenhaus (2006); Mitchell et al. (2013b) have shown

that objects in an image, of the same type as the target object, are most important for influencing

what attributes people use to describe the target. One drawback of considering a general feature

over the entire image to encode context (as in the baseline models) is that it may not specifically

focus on visual comparisons to the most relevant objects – the other objects of the same object

category within the image.

In this work, we propose a more explicit encoding of the visual difference between objects of

the same category within an image. This helps for generating referring expressions which best

discriminate the target object from the surrounding objects. For example, in an image with three

cars, two blue and one red, visual appearance comparisons could help generate “the red car” as an

expression for the latter object.

Given the referred object and its surrounding objects, we compute two types of features for

visual comparison. The first type encodes the similarities and differences in visual appearance

between the target object and other objects of the same cateogry depicted in the image. Inspired

by Sadeghi et al Sadeghi et al. (2015), we compute the difference in visual CNN features as

28

our representation of relative appearance. Because there may be many surrounding objects of

the same type in the image, and not every object will provide useful information about how to

describe the target object, we need to first select which objects to compare and aggregate their

visual differences. In Section 3.3.4, we experiment with selecting different subsets of comparison

objects: objects of the same category, objects of different category, or all other depicted objects.

For each selected comparison object, we compute the appearance difference as the subtraction

of the target object and comparison object CNN representations. We experiment with three dif-

ferent strategies for computing an aggregate vector to represent the visual difference between

the target object and the surrounding objects: minimum, maximum, and average over each fea-

ture dimension. In our experiments, pooling the average difference between the target object and

surrounding objects seems to work best. Therefore, we use this pooling in all experiments.

• Visual appearance difference representation, δvi = 1
n

∑
j 6=i

oi−oj
‖oi−oj‖ , where n is the number

of objects chosen for comparisons and we use average pooling to aggregate the differences.

The second type of comparison feature encodes the relative location and size differences

between the target object and surrounding objects of the same object category. People often use

comparative size or location terms in referring expressions, e.g. “the second giraffe from the left”

or “the smaller monkey” Viethen and Dale (2008b). To address the dynamic number of nearby

objects, we choose up to five comparison objects of the same category as the target object, sorted

by distance to the target. When fewer than five objects of the same category are depicted, this

25-d vector (5-d x 5 surrounding objects) is padded with zeros.

• Location difference representation, δli, where each 5-d difference is computed as δlij =

[
[4xtl]ij
wi

,
[4ytl]ij
hi

,
[4xbr]ij
wi

,
[4ybr]ij

hi
,
wjhj
wihi

].

In summary, our final visual representation for a target object is:

vi = Wm[oi, gi, li, δvi, δli] + bm (3.1)

29

where oi, gi, li are the target object, global context, and location/size features from the baseline

model, δvi and δli encodes visual appearance difference and location difference. Wm and bm

project the concatenation of the five types of features to be the final representation.

3.3.3 Joint Language Generation

For the referring expression generation task, rather than generating sentences for each object

in an image separately Johnson et al. (2016); Mao et al. (2016), we consider tying the generation

process together into a single task to jointly generate expressions for all objects of the same

object category depicted in an image. This makes sense intuitively – when a person attempts to

generate a referring expression for an object in an image they inherently compose that expression

while keeping in mind expressions for the other objects in the picture. This can be observed in the

fact that the expressions people generate for objects in an image tend to share similar patterns of

expression. If you say “the man on the left” for one object then you tend to say “the man on the

right” for the other object. We would like our algorithms to mimic these behaviors. Additionally,

the algorithm should also be able to push generated expressions away from each other to create

less ambiguous references. For example, if we use the word “red” to describe one object, then we

probably shouldn’t use the same word to describe another object.

To model this joint generation process, we model generation using an LSTM model where in

addition to the usual connections between time steps within an expression we also add connec-

tions between expressions for different objects. This architecture is illustrated in Fig 3.2.

Specifically, we use LSTM to generate multiple referring expressions, {ri}, given depicted

objects of the same type, {oj}.

P (R|O) =
∏
i

P (ri|oi, {oj 6=i}, {rj 6=i}),

=
∏
i

∏
t

P (rit|rit−1 , ..., ri1 , vi, {hjt,j 6=i})
(3.2)

30

where rit are words at time t, vi visual representations, and hjt is the hidden output of j-th ob-

ject at time step t that encodes the visual and sentence information for the j-th object. As visual

comparison, we aggregate the difference of hidden outputs to push away ambiguous information.

hdifit = 1
n

∑
j 6=i

hit−hjt
‖hit−hjt‖

. There, n is the the number of other objects of the same type. The hid-

den difference is jointly embedded with the target object’s hidden output, and forwarded to the

softmax layer for predicting the word.

P (rit |rit−1 , ..., ri1 , vi, {hjt,j 6=i}) = softmax(Wh[hit , hdifit] + bh) (3.3)

3.3.4 Experiments

We first perform some experiments to analyze the use of context in referring expressions

(Sec 3.3.4.1). Given these findings, we then perform experiments evaluating the usefulness of

our proposed visual and language innovations on the comprehension (Sec 3.3.4.2) and generation

tasks (Sec 3.3.4.3).

In experiments for the referring expression comprehension task, we use the same evaluation

as Mao et al Mao et al. (2016), namely we first predict the region referred by the given expres-

sion, then we compute the intersection over union (IOU) ratio between the true and predicted

bounding box. If the IOU is larger than 0.5 we count it as a true positive. Otherwise, we count it

as a false positive. We average this score over all images. For the referring expression generation

task we use automatic evaluation metrics, BLEU, ROUGE, and METEOR developed for evaluat-

RefCOCO RefCOCO+
Test A Test B Test A Test B

no context 63.91% 66.31% 50.09% 45.05%
global context 63.15% 64.21% 48.73% 42.13%
scale 2 65.57% 67.13% 50.38% 44.89%
scale 3 66.14% 68.07% 50.25% 45.40%
scale 4 66.68% 68.56% 50.34% 45.48%

Table 3.2: Expression Comprehension accuracies on RefCOCO and RefCOCO+ of the Baseline
model with differenct context source. Scale n indicates the size of the cropped window centered
by the target object.

31

ing machine translation results, commonly used to evaluate language generation results Xu et al.

(2015); Karpathy and Fei-Fei (2015); Fang et al. (2015); Mao et al. (2015); Vinyals et al. (2015b);

Kulkarni et al. (2013). We further perform human evaluations, and propose a new metric evalu-

ating the duplicate rate of generated expressions. For both tasks, we compare our models with

“Baseline” and “MMI” Mao et al. (2016). Specifically, we denote “visdif” as our visual compari-

son model, and “tie” as the LSTM tying model. We also perform an ablation study, evaluating the

combinations.

3.3.4.1 Analysis Experiments

Context Representation: As previously discussed, we suggest that the approaches proposed

in recent referring expression works Mao et al. (2016); Hu et al. (2016b) make use of relatively

weak contextual information, by only considering a single global image context for all objects.

To verify this intuition, we implemented both the baseline and strong MMI models from Mao

et al Mao et al. (2016), and compare the results for referring expression comprehension task

with and without global context on RefCOCO and Refcoco+ in Table 3.2. Surprisingly we find

that the global context does not improve the performance of the model. In fact, adding context

even decreases performance slightly. This may be due to the fact that the global context for each

object in an image would be the same, introducing some ambiguity into the referring expression

Figure 3.3: Comprehension accuracies on RefCOCO and RefCOCO+ datasets. We compare
the performance of “visdif” model without visual comparison, and visual comparison between
different-category objects, between all objects, and between same-type objects.

32

comprehension task. Given these findings, we implemented a simple modification to the global

context, computing the same visual representation, but on a somewhat scaled window centered

around the target object. We found this to improve performance, suggesting room for improving

the visual context feature. This motivate our development of a better context feature.

Visual Comparison: For our visual comparison model, there could be several choices regard-

ing which objects from the image should be compared to the target object. We experiment with

three sets of reference objects on RefCOCO and RefCOCO+ datasets: a) objects of the same-

category in the image, b) objects of different-category in the image, and c) all objects appeared in

the image. We use our “visdif” model for this experiment. The results are shown in Figure 3.3. It

is clear to see the visual comparisons to the same-category objects are most useful for referring

expression comprehension task. This is more like mimicing how human refer object – we tend to

point out the difference between the target object with the other same-category objects within the

same image.

3.3.4.2 Referring Expression Comprehension

We evaluate performance on the referring expression comprehension task on RefCOCO,

RefCOCO+ and RefCOCOg datasets. For RefCOCO and RefCOCO+, we evaluate on the two

subsets of people (testA) and all other objects (testB). For RefCOCOg, we evaluate on the per-

object split as previous work Mao et al. (2016). Since the authors haven’t released their testing

set, we show the performance on their validation set only, using the optimized hyper-parameters

on RefCOCO. Table 3.3 shows the comprehension accuracies. We observe that our implementa-

tion of Mao et al Mao et al. (2016) achieves comparable performance to the numbers reported in

their paper. We also find that adding visual comparison features to the Baseline model improves

performance across all datasets and splits. Similar improvements are also observed on top of the

MMI model.

In order to make a fully automatic referring system, we also train a Fast-RCNN Girshick

(2015) detector and build our system on top of the detections. We train Fast-RCNN on the valida-

33

tion portion only as the RefCOCO and RefCOCO+ are collected using MSCOCO training data.

For RefCOCOg, we use the detection results provided by Mao et al. (2016), which were trained

uisng Multibox Erhan et al. (2014). Results on shown in the bottom half of Table 3.3. Although

all comprehension accuracies drop due to imperfect detections, the improvements of our models

over Baseline and MMI are still observed. One weakness of our automatic system is that it highly

depends on detection performance, especially for general objects (testB). However, considering

our detector was trained on MSCOCO validation only, we believe such weakness may be alle-

viated with more training data and stronger detection techniques, e.g., He et al. (2016)Liu et al.

(2016)Ren et al. (2015)Bell et al. (2016), etc.

RefCOCO RefCOCO+ RefCOCOg
Test A Test B Test A Test B Validation

BaselineMao et al. (2016) 63.15% 64.21% 48.73% 42.13% 55.16%
visdif 67.57% 71.19% 52.44% 47.51% 59.25%
MMIMao et al. (2016) 71.72% 71.09% 58.42% 51.23% 62.14%
visdif+MMI 73.98% 76.59% 59.17% 55.62% 64.02%
Baseline(det)Mao et al. (2016) 58.32% 48.48% 46.86% 34.04% 40.75%
visdif(det) 62.50% 50.80% 50.10% 37.48% 41.85%
MMI(det)Mao et al. (2016) 64.90% 54.51% 54.03% 42.81% 45.85%
visdif+MMI(det) 67.64% 55.16% 55.81% 43.43% 46.86%

Table 3.3: Referring Expression comprehension results on the RefCOCO, RefCOCO+, and
RefCOCOg datasets. Rows of “method(det)” are the results of automatic system built on Fast-
RCNN Girshick (2015) and Multibox Erhan et al. (2014) detections.

3.3.4.3 Referring Expression Generation

For the referring expression generation task, we evaluate the usefulness of our visual compar-

ison features as well as our joint language generation model. These serve to tie the generation

process together so that the model considers other objects of the same type both visually and

linguistically during generation. On the visual side, comparisons are used to judge similarity of

the target object to other objects of the same type in terms of appearance, size and location. On

the language side, the joint LSTM model serves to both differentiate and mimic language patterns

in the referring expressions for the entire set of depicted objects. Fig 3.4 shows some comparison

between our model with other methods.

34

RefCOCO
Test A Test B

Bleu 1 Bleu 2 Rouge Meteor Bleu 1 Bleu 2 Rouge Meteor
Baseline Mao et al. (2016) 0.477 0.290 0.413 0.173 0.553 0.343 0.499 0.228

MMI Mao et al. (2016) 0.478 0.295 0.418 0.175 0.547 0.341 0.497 0.228
visdif 0.505 0.322 0.441 0.184 0.583 0.382 0.530 0.245

visdif+MMI 0.494 0.307 0.441 0.185 0.578 0.375 0.531 0.247
Baseline+tie 0.490 0.308 0.431 0.181 0.561 0.352 0.505 0.234

visdif+tie 0.510 0.318 0.446 0.189 0.593 0.386 0.533 0.249
visdif+MMI+tie 0.506 0.312 0.445 0.188 0.579 0.370 0.525 0.246

RefCOCO+
Test A Test B

Bleu 1 Bleu 2 Rouge Meteor Bleu 1 Bleu 2 Rouge Meteor
Baseline Mao et al. (2016) 0.391 0.218 0.356 0.140 0.331 0.174 0.322 0.135

MMI Mao et al. (2016) 0.370 0.203 0.346 0.136 0.324 0.167 0.320 0.133
visdif 0.407 0.235 0.363 0.145 0.339 0.177 0.325 0.145

visdif+MMI 0.386 0.221 0.360 0.142 0.327 0.172 0.325 0.135
Baseline+tie 0.392 0.219 0.361 0.143 0.336 0.177 0.325 0.140

visdif+tie 0.409 0.232 0.372 0.150 0.340 0.178 0.328 0.143
visdif+MMI+tie 0.393 0.220 0.360 0.142 0.327 0.175 0.321 0.137

RefCOCOg
validation

Bleu 1 Bleu 2 Rouge Meteor
Baseline Mao et al. (2016) 0.437 0.273 0.363 0.149

MMI Mao et al. (2016) 0.428 0.263 0.354 0.144
visdif 0.442 0.277 0.370 0.151

visdif+MMI 0.430 0.262 0.356 0.145

Table 3.4: Referring Expression Generation Results: Bleu, Rouge, Meteor evaluations for
RefCOCO, RefCOCO+ and RefCOCOg.

RefCOCO RefCOCO+
Test A Test B Test A Test B

Baseline Mao et al. (2016) 62.42% 64.99% 49.18% 42.03%
MMI 65.76% 68.25% 49.84% 45.38%
visdif 68.27% 74.92% 55.20% 43.65%

visdif+MMI 70.25% 75.47% 53.56% 47.58%
Baseline+tie 64.51% 68.34% 52.06% 43.53%

visdif+tie 71.40% 76.14% 57.17% 47.92%
visdif+MMI+tie 70.01% 76.31% 55.64% 48.04%

Table 3.5: Human Evaluations on referring expression generation.

Our full results are shown in Table 3.4. We find that incorporating our visual comparison

features into the Baseline model improves generation quality (compare row “Baseline” to row

“visdif”). It also improves the performance of MMI model (compare row “MMI” to row “vis-

dif+MMI”). We also observe that tying the language generation together across all objects con-

sistently improves the performance (compare the bottom three “+tie” rows with the above). Espe-

cially for method “visdif+tie”, it achieves the highest score under almost every measurement. We

do not perform language tying on RefCOCOg since here some objects from an image may appear

in training while others may appear in testing.

35

RefCOCO RefCOCO+
Test A Test B Test A Test B

Baseline Mao et al. (2016) 15.60% 16.40% 28.67% 46.27%
MMI 11.60% 11.73% 21.07% 26.40%
visdif 9.20% 8.80% 19.60% 31.07%

visdif+MMI 5.07% 6.13% 12.13% 16.00%
Baseline+tie 11.20% 14.93% 22.00% 32.13%

visdif+tie 4.27% 5.33% 11.73% 16.27%
visdif+MMI+tie 6.53% 4.53% 10.13% 13.33%

Table 3.6: Fraction of images for which the algorithm generates the same referring expression for
multiple objects. Smaller is better.

Figure 3.4: Referring expression generation on RefCOCO by different methods.

We observe in Table 3.4 that models incorporating “+MMI” are worse than without “+MMI”

under the automatic scoring metrics. To verify whether these metrics really reflect performance,

we performed human evaluations on the expression generation task. Three Turkers were asked

to click on the referred object given the image and the generated expression. If more than two

clicked on the true target object, we consider this expression to be correct. Table 3.5 shows the

human evaluation results, indicating that models with “+MMI” are consistently higher perfor-

mance. We also find “+tie” methods perform the best, indicating that tying language together is

able to produce less ambiguous referring expressions.

36

Finally, we introduce another evaluation metric which measures the fraction of images for

which an algorithm produces the same generated referring expression for multiple objects within

the image. Obviously, a good referring expression generator should never produce the same ex-

pressions for two objects within the same image. Thus we would like this number to be as small

as possible. The evaluation results under such metric are shown in Table 3.6. We find “+MMI”

produces smaller number of duplicated expressions on both RefCOCO and RefCOCO+, while

“+tie” helps generating even more different expressions. Our combined model “visdif+MMI+tie”

performs the best under this metric.

3.4 A Joint Speaker-Listener-Reinforcer Model for Referring Expressions

we propose a unified model that jointly learns both the CNN-LSTM speaker and embedding-

based listener models, for both the generation and comprehension tasks. Additionally, we add

a discriminative reward-based reinforcer to guide the sampling of more discriminative expres-

sions and further improve our final system. Instead of working independently, we let the speaker,

listener, and reinforcer interact with each other, resulting in improved performance on both gen-

eration and comprehension tasks. Results evaluated on three standard, large-scale datasets verify

that our proposed listener-speaker-reinforcer model significantly outperforms the state-of-the-art

on both the comprehension task and the generation task, and automatic metrics.

3.4.1 Model

Our model is composed of three modules: speaker, listener, and reinforcer. During training,

the speaker and listener are trained jointly so that they can benefit from each other and from the

reinforcer. Because the reward function for the reinforcer is not differentiable, it is incorporated

during training using a reinforcement learning policy gradient algorithm.

37

Man in the middle
wearing yellow

MLP

MLP

Concat LSTM

Embedding
Loss

Generation
loss

Reward
Loss

LSTM

Speaker

Listener

Sampling

Reinforcer

L2-Normalization

L2-Normalization

Figure 3.5: Framework: The Speaker is a CNN-LSTM model, which generates a referring ex-
pression for the target object. The Listener is a joint-embedding model learned to minimize the
distance between paired object and expression representations. In addition, a Reinforcer module
helps improve the speaker by sampling more discriminative (less ambiguous) expressions for
training. The model is jointly trained with 3 loss functions – generation loss, embedding loss, and
reward loss, thereby improving performance on both the comprehension and generation tasks.

3.4.1.1 Speaker

For our speaker module, we follow the previous state-of-the-art Mao et al. (2016); Yu et al.

(2016b), and use a CNN-LSTM framework. Here, a pre-trained CNN model is used to define

a visual representation for the target object and other visual context. Then, a Long-short term

memory (LSTM) is used to generate the most likely expression given the visual representation.

According to Sec. 3.3.2, we extract the visual representation for the target object which is a

concatenation of different features followed by a fully-connected layer fusing them together, vi =

Wm[oi, gi, li, δvi, δli] + bm. This joint feature is then fed into the LSTM for referring expression

generation. During training we minimize the negative log-likelihood:

Ls1(θ) = −
∑
i

logP (ri|oi; θ) (3.4)

Note that the speaker can be modeled using any form of CNN-LSTM structure.

In Mao et al. (2016), Mao proposed to add a Maximum Mutual Information (MMI) constraint

encouraging the generated expression to describe the target object better than the other objects

38

within the image (i.e., a ranking loss on objects). We generalize this idea to incorporate two

triplet hinge losses composed of a positive match and two negative matches. Given a positive

match (ri, oi), we sample the contrastive pair (rj, oi) where rj is the expression describing some

other object and pair (ri, ok) where ok is some other object in the same image, then we optimize

the following max-margin loss:

Ls2(θ) =
∑
i

[λs1 max(0,M + logP (ri|ok)− logP (ri|oi))

+λs2 max(0,M + logP (rj|oi)− logP (ri|oi))]
(3.5)

The first term is from Mao et al. (2016), while the second term encourages that the target object

to be better described by the true expression compared to expressions describing other objects in

the image (i.e., a ranking loss on expressions).

3.4.1.2 Listener

We use a joint-embedding model to mimick the listener’s behaviour. The purpose of this

embedding model is to encode the visual information from the target object and semantic infor-

mation from the referring expression into a joint embedding space that embeds vectors that are

visually or semantically related closer together in the space. Here for referring expression com-

prehension task, given a referring expression representation, the listener embeds it into the joint

space, then selects the closest object in the embedding space for the predicted target object.

As illustrated in Fig. 3.5, for our listener joint-embedding model (outlined by a red dashline),

we use an LSTM to encode the input referring expression and the same visual representation

as the speaker to encode the target object (thus connecting the speaker to the listener). We then

add two MLPs (multi-layer perceptions) and two L2 normalization layers following each view,

the object and the expression. Each MLP is composed of two fully connected layers with ReLU

nonlinearities between them, serving to transform the object view and the expression view into a

common embedding space. The inner-product of the two normalized representations is computed

39

as their similarity score S(r, o) in the space. As a listener, we force the similarity on target object

and referring expression pairs by applying a hinge loss over triplets, which consist of a positive

match and two negative matches:

Ll(θ) =
∑
i

[λl1 max(0,M + S(ri, ok)− S(ri, oi))

+λl2 max(0,M + S(rj, oi)− S(ri, oi))]

(3.6)

where the negative matches are randomly chosen from the other objects and expressions in the

same image.

Note that the listener model is not limited to this particular triplet-based model. For example,

Rohrbach et al. (2016a) computes a similarity score between every object for given referring

expression, and minimizes the cross entropy of the SoftMax knowing the target object, which

could also be applied here.

3.4.1.3 Reinforcer

Besides using the ground-truth pairs of target object and referring expression for training the

speaker, we also use reinforcement learning to guide the speaker toward generating less ambigu-

ous expressions (expressions that apply to the target object but not to other objects). This rein-

forcer module is composed of a discriminative reward function and performs a non-differentiable

policy gradient update to the speaker.

Specifically, given the softmax output of the speaker’s LSTM, we sample words according to

the categorical distribution at each time step, resulting in a complete expression after sampling

the <END> token. This sampling operation is non-differentiable as we do not know whether an

expression is ambiguous or not until we feed it into a reward function. Therefore, we use policy

gradient reinforcement learning to update the speaker’s parameters. Here, the goal is to maximize

the reward expectation F (w1:T) under the distribution of p(w1:T ; θ) parameterized by the speaker,

40

i.e., J = Ep(w1:T)[F]. According to the policy gradient algorithm Williams (1992), we have

∇θJ = Ep(w1:T)[F (w1:T)∇θ log p(w1:T ; θ)], (3.7)

Where log p(wt) is defined by the softmax output. We then use this gradient to update our speaker

model during training.

The only thing left is to choose a reward function that encourages the speaker to sample less

ambiguous expressions. As illustrated in Fig. 3.5 (outlined in dashed orange), the reinforcer mod-

ule learns a reward function using paired objects and expressions. We again use the same visual

representation for the target object and use another LSTM to encode the expression representa-

tion. Rather than using two MLPs to encode each view as in the listener, here we concatenate the

two views and feed them together into a MLP to learn a 1-d Logistic Regression score between

0 and 1. Trained with cross-entropy loss, the reward function computes a match score between

an input object and expression. We use this score as the reward signal in Eqn. 3.7 for sampled

expression and target object pairs. After training, the reward function is fixed to assist our joint

speaker-listener system.

3.4.1.4 Joint Model

In this subsection, we describe some specifics of how our three modules (speaker, listener,

reinforcer) are integrated into a joint framework (shown in Fig. 3.5). For the listener, we notice

that the visual vector in the embedding space is learned to capture the neighbourhood vectors of

referring expressions, thus making it aware of the listener’s knowledge. Therefore, we take this

MLP embedded vector as an additional input for the speaker, which encodes the listener based

information. In Fig. 3.5, we use concatenation to jointly encode the standard visual representation

of target object and this listener-aware representation and then feed them into speaker. Besides

concatenation, the element-wise product or compact bilinear pooling can also be applied Fukui

et al. (2016). During training, we sample the same triplets for both the speaker and listener, and

41

make the word embedding of the speaker and listener shared to reduce the number of parameters.

For the reinforcer module, we do sentence sampling using the speaker’s LSTM as shown in the

top right of Fig. 3.5. Within each mini-batch, the sampled expressions for the target objects are

fed into the reward function to obtain reward values.

The overall loss function is formulated as a multi-task learning problem:

θ = arg minLs1(θ) + Ls2(θ) + Ll(θ)− λrJ(θ), (3.8)

where λr is the weight on reward loss. The weights on the loss of speaker and listener are already

included in Eqn. 3.5 and Eqn. 3.6.

3.4.1.5 Comprehension and Generation

For the comprehension task, at test time, we could use either the speaker or listener to select

the target object given an input expression. Using the listener, we would embed the input expres-

sion into the learned embedding space and select the closest object as the predicted target. Using

the speaker, we would generate expressions for each object within the image and then select the

object whose generated expression best matches the input expression. Therefore, we utilize both

modules by ensembling the speaker and listener predictions together to pick the most probable

object given a referring expression.

ô = arg max
o
P (r|o)S(o, r)λ (3.9)

Surprisingly, using the speaker alone (setting λ to 0) already achieves state-of-art results due

to the joint training. Adding the listener further improves performance to more than 4% over

previous state-of-art results.

For the generation task, we first let the speaker generate multiple expressions per object via

beam search. We then use the listener to rerank these expressions and select the least ambiguous

expression, which is similar to Andreas and Klein (2016). To fully utilize the listener’s power in

42

generation, we propose to consider cross comprehension as well as the diversity of expressions

by minimizing the potential:

E(r) =
∑
i

θi(ri) +
∑
i,j

θi,j(ri, rj)

θi(ri) = − logP (ri|oi)− λ1 logS(ri, oi)

+ λ2 max
j 6=i

logS(ri, oj)

θi,j(ri, rj) = λ3I(ri = rj)

(3.10)

The first term and second term in unary potential measure how well the target object and gen-

erated expression match using the speaker and listener modules respectively, which was also used

in Andreas and Klein (2016). The third term in unary potential measures the likelihood of the

generated sentence for describing other objects in the same image. The pairwise potential penal-

ize the same sentences being generated for different objects (encouraging diversity in generation).

In this way, the expressions for every object in an image are jointly generated. Compared with

the previous model that attempted to tie language generation of referring expressions together Yu

et al. (2016b), the constraints in Eqn. 3.10 are more explicit and overall this works better to re-

duce ambiguity in the generated expressions.

3.4.2 Experiments

3.4.2.1 Comprehension Task

After training, we can either use the speaker or listener to perform the comprehension task.

For the speaker that models P (r|o), we feed every ground-truth object region within the given

image to the speaker and select the most probable region for the expression as the comprehension

result, i.e., o∗ = argmaxoip(r|oi). For the listener, we directly compute the similarity score S(r, o)

between the proposal/object and expression and pick the object with the highest probability. For

43

RefCOCO RefCOCO+ RefCOCOg
val TestA TestB val TestA TestB val

1 listener 77.48% 76.58% 78.94% 60.50% 61.39% 58.11% 71.12%
2 previous state-of-artYu et al. (2016b) 76.90% 75.60% 78.00% 58.94% 61.29% 56.24% 65.32%
3 baselineMao et al. (2016) 64.56% 63.20% 66.69% 47.78% 51.01% 44.24% 56.81%
4 speakerYu et al. (2016b) 69.95% 68.59% 72.84% 52.63% 54.51% 50.02% 59.40%
5 speaker+listener 71.20% 69.98% 73.66% 54.23% 56.22% 52.46% 61.83%
6 speaker+reinforcer 71.88% 70.18% 73.01% 53.38% 56.50% 51.16% 61.91%
7 speaker+listener+reinforcer 72.46% 71.10% 74.01% 55.54% 57.46% 53.71% 64.07%
8 baseline+MMIMao et al. (2016) 72.28% 72.60% 73.39% 56.66% 60.01% 53.15% 63.31%
9 speaker+MMIYu et al. (2016b) 76.18% 74.39% 77.30% 58.94% 61.29% 56.24% 65.32%

10 speaker+listener+MMI 79.22% 77.78% 79.90% 61.72% 64.41% 58.62% 71.77%
11 speaker+reinforcer+MMI 78.38% 77.13% 79.53% 61.32% 63.99% 58.25% 67.06%
12 speaker+listener+reinforcer+MMI 79.56% 78.95% 80.22% 62.26% 64.60% 59.62% 72.63%

RefCOCO (detected) RefCOCO+ (detected) RefCOCOg (detected)
val TestA TestB val TestA TestB val

1 listener - 71.63% 61.47% - 57.33% 47.21% 56.18%
2 previous state-of-artYu et al. (2016b) - 72.03% 63.08% - 58.87% 47.70% 58.26%
3 baselineMao et al. (2016) - 64.42% 56.75% - 52.84% 42.68% 53.13%
4 speakerYu et al. (2016b) - 67.69% 60.16% - 54.37% 45.00% 53.83%
5 speaker+listener - 68.27% 61.00% - 55.41% 45.65% 54.96%
6 speaker+reinforcer - 69.12% 60.47% - 55.45% 44.96% 55.64%
7 speaker+listener+reinforcer - 69.15% 61.96% - 55.97% 46.45% 57.03%
8 baseline+MMIMao et al. (2016) - 68.73% 59.56% - 58.15% 46.63% 57.23%
9 speaker+MMIYu et al. (2016b) - 72.03% 63.08% - 58.87% 47.70% 58.26%

10 speaker+listener+MMI - 72.95% 63.10% - 60.23% 48.11% 58.57%
11 speaker+reinforcer+MMI - 72.34% 63.24% - 59.36% 48.72% 58.70%
12 speaker+listener+reinforcer+MMI - 72.88% 63.43% - 60.43% 48.74% 59.51%

Table 3.7: Ablation study using the speaker module for the comprehension task (indicated in
bold). Top half shows performance given ground truth bounding boxes for objects, bottom half
performance using automatic object detectors to select potential objects. We find that adding
listener and reinforcer modules to the speaker increases performance.

evaluation, we compute the intersection-over-union (IoU) of the comprehended region with the

ground-truth object. If the IoU score of the predicted region is greater than 0.5, we consider this a

correct comprehension.

To demonstrate the benefits of each module, we run ablation studies in Lines 3-12 of Ta-

ble 3.7 (for speaker as comprehender) and in Lines 3-8 of Table 3.8 (for listener as comprehen-

der) on all three datasets. Each row shows the results after adding a module during training. For

some models that have both speaker and listener, we highlight the module being used for com-

prehension in bold. For example, “speaker+listener” means we use the speaker module of the

joint model to do the comprehension task, while “speaker+listener” means we use the listener

module for this task. Note our speaker module is implemented using the “visdif” model in Yu

et al. (2016b) as mentioned in Section 3.4.1.1. Following previous work Mao et al. (2016)Yu et al.

44

RefCOCO RefCOCO+ RefCOCOg
val TestA TestB val TestA TestB val

1 listener 77.48% 76.58% 78.94% 60.50% 61.39% 58.11% 71.12%
2 previous state-of-artYu et al. (2016b) 76.90% 75.60% 78.00% 58.94% 61.29% 56.24% 65.32%
3 speaker+listener 77.84% 77.50% 79.31% 60.97% 62.85% 58.58% 72.25%
4 speaker+listener+reinforcer 78.14% 76.91% 80.10% 61.34% 63.34% 58.42% 71.72%
5 speaker+listener+reinforcer (ensemble) 78.88% 78.01% 80.65% 61.90% 64.02% 59.19% 72.43%
6 speaker+listener+MMI 78.42% 78.45% 79.94% 61.48% 62.14% 58.91% 72.13%
7 speaker+listener+reinforcer+MMI 78.36% 77.97% 79.86% 61.33% 63.10% 58.19% 72.02%
8 speaker+listener+reinforcer+MMI (ensemble) 80.36% 80.08% 81.73% 63.83% 65.40% 60.73% 74.19%

RefCOCO (detected) RefCOCO+ (detected) RefCOCOg (detected)
val TestA TestB val TestA TestB val

1 listener - 71.63% 61.47% - 57.33% 47.21% 56.18%
2 previous state-of-artYu et al. (2016b) - 72.03% 63.08% - 58.87% 47.70% 58.26%
3 speaker+listener - 72.23% 62.92% - 59.61% 48.31% 57.38%
4 speaker+listener+reinforcer - 72.65% 62.69% - 58.68% 48.23% 58.32%
5 speaker+listener+reinforcer (ensemble) - 72.78% 64.38% - 59.80% 49.34% 60.46%
6 speaker+listener+MMI - 72.95% 62.43% - 58.68% 48.44% 57.34%
7 speaker+listener+reinforcer+MMI - 72.94% 62.98% - 58.68% 47.68% 57.72%
8 speaker+listener+reinforcer+MMI (ensemble) - 73.78% 63.83% - 60.48% 49.36% 59.84%

Table 3.8: Ablation study using listener or ensembled listener+speaker modules for the compre-
hension task (indicated in bold). Top half shows performance given ground truth bounding boxes
for objects, bottom half performance using automatic object detectors to select potential objects.
We find that jointly training with the speaker improves listener’s performance and that adding the
reinforcer module in an ensembled speaker+listener prediction performs the best.

(2016b)Nagaraja et al. (2016), we show the results trained with MMI and those trained w/o MMI

on speakers. We compare our models with the “baseline” model Mao et al. (2016) (Line 3, 8 in

Table 3.7), the pure listener model (Line 1), and previous state-of-art results (Line 2) achieved

in Nagaraja et al. (2016)Yu et al. (2016b).

First, we evaluate the performance of the speaker on the comprehension task (Table 3.7).

We observe all speaker models trained with MMI outperform w/o MMI. We also find that the

speaker can be improved by joint training with the listener module and by incorporating the

reinforcer module. With MMI ranking, the speaker learned with joint training (Line 12) is able to

outperform the pure listener by around 2% on all three datasets, which already achieves state-of-

art performance on the comprehension task.

Second, we show evaluations using variations of the listener module or ensembled listener+speaker

modules (indicated in bold) for the comprehension task in Table 3.8. We note that the listener

generally works better than speaker for the comprehension task, indicating that the deterministic

joint-embedding model is more suitable for this task than the speaker model – similar results

were observed in Rohrbach et al. (2016a). While the reinforcer module seems not to be as ef-

45

Figure 3.6: Example comprehension results based on detection. Green box
shows the ground-truth region, blue box shows correct comprehension using our
“speaker+listener+reinforcer+MMI” model, and red box shows incorrect comprehension. We use
top two rows to show some correct comprehensions and bottom two rows to show some incorrect
ones.

fective as the speaker, we still find that the joint training always brings additional discriminative

benefits to the listener module, resulting in improved performance (compare Line 3-8 with Line 1

in Table 3.8). Ensembling the speaker and listener together achieves the best results overall.

Both of the above experiments analyze comprehension performance given ground truth

bounding boxes for potential comprehension objects, where the algorithm must select which

of these objects is being described. This provides an analysis of comprehension performance

independent of any particular object detection method. Additionally, we also show results using

an object detector to automatically select regions for consideration during comprehension in the

bottom half of each table (Tables 3.7 and 3.8). As our detection algorithm, we use current state of

the art detector in effectiveness and speed, SSD Liu et al. (2016), trained on a subset of the MS

COCO train+val dataset, removing images that are in the test splits of RefCOCO or RefCOCO+

46

RefCOCO RefCOCO+ RefCOCOg
Test A Test B Test A Test B val

Meteor CIDEr Meteor CIDEr Meteor CIDEr Meteor CIDEr Meteor CIDEr
speaker+tie Yu et al. (2016b) 0.283 0.681 0.320 1.273 0.204 0.499 0.196 0.683 - -
baseline+MMI 0.243 0.615 0.300 1.227 0.199 0.462 0.189 0.679 0.149 0.585
speaker+MMI 0.260 0.679 0.319 1.276 0.202 0.475 0.196 0.683 0.147 0.573
speaker+listener+MMI 0.268 0.704 0.327 1.303 0.208 0.496 0.201 0.697 0.150 0.589
speaker+reinforcer+MMI 0.266 0.702 0.323 1.291 0.204 0.482 0.197 0.692 0.151 0.602
speaker+listener+reinforcer+MMI 0.268 0.697 0.329 1.323 0.204 0.494 0.202 0.709 0.154 0.592
baseline+MMI+rerank 0.280 0.729 0.329 1.285 0.204 0.484 0.205 0.730 0.160 0.654
speaker+MMI+rerank 0.287 0.745 0.334 1.295 0.208 0.490 0.213 0.712 0.156 0.653
speaker+listener+MMI+rerank 0.293 0.763 0.337 1.306 0.211 0.500 0.221 0.734 0.159 0.650
speaker+reinforcer+MMI+rerank 0.291 0.748 0.337 1.311 0.207 0.499 0.215 0.729 0.158 0.653
speaker+listener+reinforcer+MMI+rerank 0.296 0.775 0.340 1.320 0.213 0.520 0.215 0.735 0.159 0.662

Table 3.9: Ablation study for generation using automatic evaluation.

RefCOCO RefCOCO+
Test A Test B Test A Test B

speaker+tie Yu et al. (2016b) 71.40% 76.14% 57.17% 47.92%
speaker+MMI Yu et al. (2016b) 68.82% 75.50% 53.57% 47.88%
speaker+listener+MMI 73.23% 76.08% 53.83% 49.19%
speaker+reinforcer+MMI 71.08% 76.09% 55.16% 48.50%
speaker+listener+reinforcer+MMI 74.08% 76.44% 56.92% 53.23%
speaker+listener+reinforcer+MMI+rerank 76.95% 78.10% 58.85% 58.20%

Table 3.10: Human Evaluations on generation.

or in the validation split of RefCOCOg. We empirically select 0.30 as the confidence threshold

for detection output. While performance drops somewhat due to the strong dependence of “vis-

dif” model on detection Yu et al. (2016b), the overall improvements brought by each module are

consistent with using ground-truth objects, showin the robustness of our joint model. Fig. 3.6

shows some comprehension results using our full model.

3.4.2.2 Generation Task

For the generation task, we evaluate variations on the speaker module. Evaluating the gener-

ation is not as simple as comprehension. In image captioning, BLEU, ROUGE, METEOR and

CIDEr are common automatic metrics and have been widely used as standard evaluations. We

show automatic evaluation using the METEOR and CIDEr metrics for generation in Table 3.9

where “+rerank” denotes models incorporating the reranking mechanism and global optimiza-

tion over all objects (Eqn. 3.10). To computer CIDEr robustly, we collect more expressions for

47

Figure 3.7: Joint generation examples using “speaker+listener+reinforcer+MMI+rerank”. Each
sentence shows the generated expression for one of the depicted objects (color coded to indicate
correspondence)

objects in the test sets for RefCOCO and RefCOCO+, obtaining 10.1 and 9.4 expressions respec-

tively on average per object. For RefCOCOg we use the original expressions released with the

dataset which may be limited, but we still show its performance for completeness. We choose the

“speaker+tie” model in Yu et al. (2016b) as reference, which learns to tie the expression genera-

tion together and achieves state-of-art performance. Generally we find that the speaker in jointly

learned models achieves higher scores than the single speaker under both metrics across datasets.

Such improvements are observed under both settings without “+rerank” or with “+rerank”.

In addition, since previous work Yu et al. (2016b) has found that these metrics do not always

agree well with human judgments for referring expressions, we also run a human evaluation

on the same set of objects as Yu et al. (2016b) for RefCOCO and RefCOCO+. Here we ask

Turkers to click on the referred object given a generated expression. These results are shown

in Table. 3.10. Results indicate the ablated benefits brought by each module, and ultimately the

“+rerank” of our joint model achieves the best performance.

We show the joint expression generation using our full model with “+rerank” in Fig. 3.7. As

observed, the expressions of every target object are considered together, where each of them is

meant to be relevant to the target object and irrelevant to the other objects.

48

3.5 Modular Attention Network for Referring Expression Comprehension

As mentioned above, most previous work uses a simple concatenation of all features (target

object feature, location feature and context feature) as input and a single LSTM to encode/de-

code the whole expression, ignoring the variance among different types of referring expressions.

Depending on what is distinctive about a target object, different kinds of information might be

mentioned in its referring expression. For example, if the target object is a red ball among 10

black balls then the referring expression may simply say “the red ball”. If that same red ball is

placed among 3 other red balls then location-based information may become more important,

e.g., “red ball on the right”. Or, if there were 100 red balls in the scene then the ball’s relation-

ship to other objects might be the most distinguishing information, e.g., “red ball next to the

cat”. Therefore, it is natural and intuitive to think about the comprehension model as a modular

network, where different visual processing modules are triggered based on what information is

present in the referring expression.

Modular networks have been successfully applied to address other tasks such as (visual)

question answering Andreas et al. (2016a,b), visual reasoning Hu et al. (2017a); Johnson et al.

(2017b), relationship modeling Hu et al. (2017b), and multi-task reinforcement learning Andreas

et al. (2017). To the best our knowledge, we present the first modular network for the general

referring expression comprehension task. Moreover, these previous work typically relies on

an off-the-shelf language parser Socher et al. (2013) to parse the query sentence/question into

different components and dynamically assembles modules into a model addressing the task.

However, the external parser could raise parsing errors and propagate them into model setup,

adversely effecting performance.

Therefore, we propose a modular network for referring expression comprehension - Modular

Attention Network (MAttNet) Yu et al. (2018) - that takes a natural language expression as input

and softly decomposes it into three phrase embeddings. These embeddings are used to trigger

three separate visual modules (for subject, location, and relationship comprehension, each with a

different attention model) to compute matching scores, which are finally combined into an overall

49

Expression=“man in red
holding controller on the right”

holding controllerman in red on the right

["#,%#,"&,%&]

⨁

Subject Module Location Module

scoresubj scoreloc

scoreoverall

Language Attention Network

Relationship Module

⨂ ⨂ ⨂

Module Weights
[0.49,'0.31,'0.20]

scorerel

Figure 3.8: Modular Attention Network (MAttNet). Given an expression, we attentionally parse
it into three phrase embeddings, which are input to three visual modules that process the de-
scribed visual region in different ways and compute individual matching scores. An overall score
is then computed as a weighted combination of the module scores.

region score based on the module weights. Our model is illustrated in Fig. 3.8. There are 3 main

novelties in MAttNet.

First, MAttNet is designed for general referring expressions. It consists of 3 modules: sub-

ject, location and relationship. As in Kazemzadeh et al. (2014), a referring expression could be

parsed into 7 attributes: category name, color, size, absolute location, relative location, relative

object and generic attribute. MAttNet covers all of them. The subject module handles the cat-

egory name, color and other attributes, the location module handles both absolute and (some)

relative location, and the relationship module handles subject-object relations. Each module has a

different structure and learns the parameters within its own modular space, without affecting the

others.

Second, MAttNet learns to parse expressions automatically through a soft attention based

mechanism, instead of relying on an external language parser Socher et al. (2013); Kazemzadeh

et al. (2014). We show that our learned “parser” attends to the relevant words for each module

50

and outperforms an off-the-shelf parser by a large margin. Additionally, our model computes

module weights which are adaptive to the input expression, measuring how much each module

should contribute to the overall score. Expressions like “red cat” will have larger subject module

weights and smaller location and relationship module weights, while expressions like “woman on

left” will have larger subject and location module weights.

Third, we apply different visual attention techniques in the subject and relationship modules

to allow relevant attention on the described image portions. In the subject module, soft attention

attends to the parts of the object itself mentioned by an expression like “man in red shirt” or “man

with yellow hat”. We call this “in-box” attention. In contrast, in the relationship module, hard

attention is used to attend to the relational objects mentioned by expressions like “cat on chair” or

“girl holding frisbee”. Here the attention focuses on “chair” and “frisbee” to pinpoint the target

object “cat” and “girl”. We call this “out-of-box” attention. We demonstrate both attentions play

important roles in improving comprehension accuracy.

During training, the only supervision is object proposal, referring expression pairs, (oi, ri),

and all of the above are automatically learned in an end-to-end unsupervised manner, including

the word attention, module weights, soft spatial attention, and hard relative object attention.

We demonstrate MAttNet has significantly superior comprehension performance over all

state-of-the-art methods, achieving ∼10% improvements on bounding-box localization and al-

most doubling precision on pixel segmentation.

3.5.1 Model

MAttNet is composed of a language attention network plus visual subject, location, and re-

lationship modules. Given a candidate object oi and referring expression r, we first use the lan-

guage attention network to compute a soft parse of the referring expression into three components

(one for each visual module) and map each to a phrase embedding. Second, we use the three

visual modules (with unique attention mechanisms) to compute matching scores for oi to their

51

word embedding

FC Module Weights

["#$%&,"()*,"+,(]
Modular Phrase Embedding

[.#$%&,.()*,.+,(]

man in red holding controller on the right

Word Attention
man in red holding controller on the right

man in red holding controller on the right

⨀

Bi-LSTM

man in red holding controller on the right

Figure 3.9: Language Attention Network

respective embeddings. Finally, we take a weighted combination of these scores to get an overall

matching score, measuring the compatibility between oi and r.

3.5.1.1 Language Attention Network

Instead of using an external language parser Socher et al. (2013); Andreas et al. (2016b,a)

or pre-defined templates Kazemzadeh et al. (2014) to parse the expression, we propose to learn

to attend to the relevant words automatically for each module, similar to Hu et al. (2017b). Our

language attention network is shown in Fig. 3.9. For a given expression r = {ut}Tt=1, we use

a bi-directional LSTM to encode the context for each word. We first embed each word ut into

a vector et using an one-hot word embedding, then a bi-directional LSTM-RNN is applied to

encode the whole expression. The final hidden representation for each word is the concatenation

of the hidden vectors in both directions:

et = embedding(ut)

~ht = ~LSTM(et,~ht−1)

~ht = ~LSTM(et, ~ht+1)

ht = [~ht, ~ht].

52

Given H = {ht}Tt=1, we apply three trainable vectors fm where m ∈ {subj, loc, rel}, computing

the attention on each word Yang et al. (2016) for each module:

am,t =
exp (fTmht)∑T
k=1 exp (fTmhk)

The weighted sum of word embeddings is used as the modular phrase embedding:

qm =
T∑
t=1

am,tet

Different from relationship detection Hu et al. (2017b) where phrases are always decomposed

as (Subject, Preposition/Verb, Object) triplets, referring expressions have no such well-posed

structure. For example, expressions like “smiling boy” only contain language relevant to the

subject module, while expressions like “man on left” are relevant to the subject and location

modules, and “cat on the chair” are relevant to the subject and relationship modules. To handle

this variance, we compute 3 module weights for the expression, weighting how much each mod-

ule contributes to the expression-object score. We concatenate the first and last hidden vectors

from H which memorizes both structure and semantics of the whole expression, then use another

fully-connected (FC) layer to transform it into 3 module weights:

[wsubj, wloc, wrel] = softmax(W T
m[h0, hT] + bm)

3.5.1.2 Visual Modules

While most previous work Yu et al. (2016b, 2017b); Mao et al. (2016); Nagaraja et al. (2016)

evaluates CNN features for each region proposal/candidate object, we use Faster R-CNN Ren

et al. (2015) as the backbone net for a faster and more principled implementation. Addition-

ally, we use ResNet He et al. (2016) as our main feature extractor, but also provide compar-

53

Subject
blob

Res-C3
blob

Res-C4
blob

Attribute
blob

concat-1x1 conv

man
boy
girl
red
blue
black
running
…

avg. pooling

Subj. phrase embedding

Matching
score&'()

RoI concate-1x1 conv

Visual subject representation

Phrase-guided embedding

Phrase-guided
Attentional

Pooling

*&'()

MLP

MLP

L2%normlize

L2%normlize

Matching function

Figure 3.10: The subject module is composed of a visual subject representation and phrase-
guided embedding. An attribute prediction branch is added after the ResNet-C4 stage and the 1x1
convolution output of attribute prediction and C4 is used as the subject visual representation. The
subject phrase embedding attentively pools over the spatial region and feeds the pooled feature
into the matching function.

isons to previous methods using the same VGGNet features Simonyan and Zisserman (2014)

(in Sec. 3.5.2.1).

Given an image and a set of candidates oi, we run Faster R-CNN to extract their region repre-

sentations. Specifically, we forward the whole image into Faster R-CNN and crop the C3 feature

(last convolutional output of 3rd-stage) for each oi, following which we further compute the C4

feature (last convolutional output of 4th-stage). In Faster R-CNN, C4 typically contains higher-

level visual cues for category prediction, while C3 contains relatively lower-level cues including

colors and shapes for proposal judgment, making both useful for our purposes. In the end, we

compute the matching score for each oi given each modular phrase embedding, i.e., S(oi|qsubj),

S(oi|qloc) and S(oi|qrel).

Subject Module: Our subject module is illustrated in Fig. 3.10. Given the C3 and C4 fea-

tures of a candidate oi, we forward them to two tasks. The first is attribute prediction, helping

produce a representation that can understand appearance characteristics of the candidate. The sec-

ond is the phrase-guided attentional pooling to focus on relevant regions within object bounding

boxes.

Attributes are frequently used in referring expressions to differentiate between objects of

the same category, e.g. “woman in red” or “the fuzzy cat”. Inspired by previous work Yao et al.

54

(2016); Wu et al. (2017); You et al. (2016); Liu et al. (2017b); Su et al. (2017), we add an at-

tribute prediction branch in our subject module. While preparing the attribute labels in the train-

ing set, we first run a template parser Kazemzadeh et al. (2014) to obtain color and generic at-

tribute words, with low-frequency words removed. We combine both C3 and C4 for predicting

attributes as both low and high-level visual cues are important. The concatenation of C3 and C4

is followed with a 1× 1 convolution to produce an attribute feature blob. After average pooling,

we get the attribute representation of the candidate region. A binary cross-entropy loss is used for

multi-attribute classification:

Lattrsubj = λattr
∑
i

∑
j

wattrj [log(pij) + (1− yij)log(1− pij)]

where wattrj = 1/
√

freqattr weights the attribute labels, easing unbalanced data issues. During

training, only expressions with attribute words go through this branch.

The subject description varies depending on what information is most salient about the object.

Take people for example. Sometimes a person is described by their accessories, e.g., “girl in

glasses”; or sometimes particular clothing items may be mentioned, e.g., “woman in white pants”.

Thus, we allow our subject module to localize relevant regions within a bounding box through

“in-box” attention. To compute spatial attention, we first concatenate the attribute blob and C4,

then use a 1 × 1 convolution to fuse them into a subject blob, which consists of spatial grid of

features V ∈ Rd×G, where G = 14× 14. Given the subject phrase embedding qsubj , we compute

its attention on each grid location:

Ha = tanh(WvV +Wqq
subj)

av = softmax(wTh,aHa)

The weighted sum of V is the final subject visual representation for the candidate region oi:

ṽsubji =
G∑
i=1

avi vi

55

We measure the similarity between the subject representation ṽsubji and phrase embedding

qsubj using a matching function, i.e, S(oi|qsubj) = F (ṽsubji , qsubj). As shown in top-right of

Fig. 3.10, it consists of two MLPs (multi-layer perceptions) and two L2 normalization layers fol-

lowing each input. Each MLP is composed of two fully connected layers with ReLU activations,

serving to transform the visual and phrase representation into a common embedding space. The

inner-product of the two l2-normalized representations is computed as their similarity score. The

same matching function is used to compute the location score S(oi|qloc), and relationship score

S(oi|qrel).

Location Module: Our location module is shown in Fig. 3.11. Location is frequently used

Matching!"
,%"& , !'# , %'&(,

)ℎ
#&

same-type location difference

concat
scoreloc

Loc. phrase embedding +,-.

Figure 3.11: Location Module

in referring expressions with about 41% expressions from RefCOCO and 36% expressions from

RefCOCOg containing absolute location words Kazemzadeh et al. (2014), e.g. “cat on the right”

indicating the object location in the image. Following previous work Yu et al. (2016b, 2017b), we

use a 5-d vector li to encode the top-left position, bottom-right position and relative area to the

image for the candidate object, i.e., li = [xtl
W
, ytl
H
, xbr
W
, ybr
H
, w·h
W ·H].

Additionally, expressions like “dog in the middle” and “second left person” imply relative po-

sitioning among objects of the same category. We encode the relative location representation of a

candidate object by choosing up to five surrounding objects of the same category and calculating

their offsets and area ratio, i.e., δlij = [
[4xtl]ij
wi

,
[4ytl]ij
hi

,
[4xbr]ij
wi

,
[4ybr]ij

hi
,
wjhj
wihi

]. The final location

representation for the target object is:

l̃loci = Wl[li; δli] + bl

and the location module matching score between oi and qloc is S(oi|qloc) = F (l̃loci , qloc).

56

Relationship Module

Matching

+
Relative location difference

max() scorerel

Rel. phrase embedding !"#$

Figure 3.12: Relationship Module

While the subject module deals with “in-box” details about the target object, some other

expressions may involve its relationship with other “out-of-box” objects, e.g., “cat on chaise

lounge”. The relationship module is used to address these cases. As in Fig. 3.12, given a can-

didate object oi we first look for its surrounding (up-to-five) objects oij regardless of their cate-

gories. We use the average-pooled C4 feature as the appearance feature vij of each supporting

object. Then, we encode their offsets to the candidate object via

δmij = [
[4xtl]ij
wi

,
[4ytl]ij
hi

,
[4xbr]ij
wi

,
[4ybr]ij
hi

,
wjhj
wihi

].

The visual representation for each surrounding object is then:

ṽrelij = Wr[vij; δmij] + br

We compute the matching score for each of them with qrel and pick the highest one as the rela-

tionship score, i.e.,

S(oi|qrel) = maxj 6=iF (ṽrelij , q
rel)

This can be regarded as weakly-supervised Multiple Instance Learning (MIL) which is similar

to Hu et al. (2017b); Nagaraja et al. (2016).

57

RefCOCO RefCOCO+ RefCOCOg
feature val testA testB val testA testB val* val test

1 Mao Mao et al. (2016) vgg16 - 63.15 64.21 - 48.73 42.13 62.14 - -
2 Varun Nagaraja et al. (2016) vgg16 76.90 75.60 78.00 - - - - - 68.40
3 Luo Luo and Shakhnarovich (2017) vgg16 - 74.04 73.43 - 60.26 55.03 65.36 - -
4 CMN Hu et al. (2017b) vgg16-frcn - - - - - - 69.30 - -
5 Speaker/visdif Yu et al. (2016b) vgg16 76.18 74.39 77.30 58.94 61.29 56.24 59.40 - -
6 Listener Yu et al. (2017b) vgg16 77.48 76.58 78.94 60.50 61.39 58.11 71.12 69.93 69.03
7 Speaker+Listener+Reinforcer vgg16 79.56 78.95 80.22 62.26 64.60 59.62 72.63 71.65 71.92
8 Speaker+Listener+Reinforcer vgg16 78.36 77.97 79.86 61.33 63.10 58.19 72.02 71.32 71.72
9 MAttN:subj(+attr)+loc(+dif)+rel vgg16 80.94 79.99 82.30 63.07 65.04 61.77 73.08 73.04 72.79

10 MAttN:subj(+attr)+loc(+dif)+rel res101-frcn 83.54 82.66 84.17 68.34 69.93 65.90 - 76.63 75.92
11 MAttN:subj(+attr+attn)+loc(+dif)+rel res101-frcn 85.65 85.26 84.57 71.01 75.13 66.17 - 78.10 78.12

Table 3.11: Comparison with state-of-the-art approaches on ground-truth MS COCO regions.

3.5.1.3 Loss Function

The overall weighted matching score for candidate object oi and expression r is:

S(oi|r) = wsubjS(oi|qsubj) + wlocS(oi|qloc) + wrelS(oi|qrel). (3.11)

During training, for each given positive pair of (oi, ri), we randomly sample two negative

pairs (oi, rj) and (ok, ri), where rj is the expression describing some other object and ok is some

other object in the same image, to calculate a combined hinge loss,

Lrank =
∑
i

[λ1max(0,∆ + S(oi|rj)− S(oi|ri))

+λ2max(0,∆ + S(ok|ri)− S(oi|ri))].

The overall loss incorporates both attributes and ranking loss: L = Lattrsubj + Lrank.

3.5.2 Experiments

3.5.2.1 Results: Referring Expression Comprehension

Given a test image, I , with a set of proposals/objects, O = {oi}Ni=1, we use Eqn. 3.11 to

compute the matching score S(oi|r) for each proposal/object given the input expression r, and

pick the one with the highest score. For evaluation, we compute the intersection-over-union

(IoU) of the selected region with the ground-truth bounding box, considering IoU > 0.5 a correct

comprehension.

58

RefCOCO RefCOCO+ RefCOCOg
val testA testB val testA testB val test

1 Matching:subj+loc 79.14 79.42 80.42 62.17 63.53 59.87 70.45 70.92
2 MAttN:subj+loc 79.68 80.20 81.49 62.71 64.20 60.65 72.12 72.62
3 MAttN:subj+loc(+dif) 82.06 81.28 83.20 64.84 65.77 64.55 75.33 74.46
4 MAttN:subj+loc(+dif)+rel 82.54 81.58 83.34 65.84 66.59 65.08 75.96 74.56
5 MAttN:subj(+attr)+loc(+dif)+rel 83.54 82.66 84.17 68.34 69.93 65.90 76.63 75.92
6 MAttN:subj(+attr+attn)+loc(+dif)+rel 85.65 85.26 84.57 71.01 75.13 66.17 78.10 78.12
7 parser+MAttN:subj(+attr+attn)+loc(+dif)+rel 80.20 79.10 81.22 66.08 68.30 62.94 73.82 73.72

Table 3.12: Ablation study of MAttNet using different combination of modules. The feature used
here is res101-frcn.

RefCOCO RefCOCO+ RefCOCOg
detector val testA testB val testA testB val test

1 Speaker+Listener+Reinforcer res101-frcn 69.48 73.71 64.96 55.71 60.74 48.80 60.21 59.63
2 Speaker+Listener+Reinforcer res101-frcn 68.95 73.10 64.85 54.89 60.04 49.56 59.33 59.21
3 Matching:subj+loc res101-frcn 72.28 75.43 67.87 58.42 61.46 52.73 64.15 63.25
4 MAttN:subj+loc res101-frcn 72.72 76.17 68.18 58.70 61.65 53.41 64.40 63.74
5 MAttN:subj+loc(+dif) res101-frcn 72.96 76.61 68.20 58.91 63.06 55.19 64.66 63.88
6 MAttN:subj+loc(+dif)+rel res101-frcn 73.25 76.77 68.44 59.45 63.31 55.68 64.87 64.01
7 MAttN:subj(+attr)+loc(+dif)+rel res101-frcn 74.51 77.81 68.39 62.13 66.33 55.75 65.33 65.19
8 MAttN:subj(+attr+attn)+loc(+dif)+rel res101-frcn 76.40 80.43 69.28 64.93 70.26 56.00 66.67 67.01
9 MAttN:subj(+attr+attn)+loc(+dif)+rel res101-mrcn 76.65 81.14 69.99 65.33 71.62 56.02 66.58 67.27

Table 3.13: Ablation study of MAttNet on fully-automatic comprehension task using differ-
ent combination of modules. The features used here are res101-frcn, except the last row using
res101-mrcn.

First, we compare our model with previous methods using COCO’s ground-truth object

bounding boxes as proposals. Results are shown in Table. 3.11. As all of the previous meth-

ods (Line 1-8) used a 16-layer VGGNet (vgg16) as the feature extractor, we run our experiments

using the same feature for fair comparison. Note the flat fc7 is a single 4096-dimensional feature

which prevents us from using the phrase-guided attentional pooling in Fig. 3.10, so we use aver-

age pooling for subject matching. Despite this, our results (Line 9) still outperform all previous

state-of-the-art methods. After switching to the res101-based Faster R-CNN (res101-frcn) repre-

sentation, the comprehension accuracy further improves another ∼3% (Line 10). Note our Faster

R-CNN is pre-trained on COCO’s training images, excluding those in RefCOCO, RefCOCO+,

and RefCOCOg’s validation+testing. Thus no training images are seen during our evaluation2.

2 Such constraint forbids us to evaluate on RefCOCOg’s val* using the res101-frcn feature in Table 3.11.

59

(a) RefCOCO

(b) RefCOCO+

(c) RefCOCOg

Expression=“second from right guy”

Lang. attention Subj. attentionComprehension Lang. attention Subj. attentionComprehension

Expression=“man with hands up”

Expression=“a man with a silver ring is holding a phone”Expression=“woman in plaid jacket and blue pants on skis”

Expression=“bottom left bowl”

Expression=“suit guy under umbrella”

Figure 3.13: Examples of fully automatic comprehension. The blue dotted boxes show our pre-
diction with the relative regions in yellow dotted boxes, and the green boxes are the ground-truth.
The word attention is multiplied by module weight.

Our full model (Line 11) with phrase-guided attentional pooling achieves the highest accuracy

over all others by a large margin.

Second, we study the benefits of each module of MAttNet by running ablation experiments

(Table. 3.12) with the same res101-frcn features. As a baseline, we use the concatenation of the

regional visual feature and the location feature as the visual representation and the last hidden

output of LSTM-encoded expression as the language representation, then feed them into the

matching function to obtain the similarity score (Line 1). Compared with this, a simple two-

module MAttNet using the same features (Line 2) already outperforms the baseline, showing the

advantage of modular learning. Line 3 shows the benefit of encoding location (Fig. 3.11). After

adding the relationship module, the performance further improves (Line 4). Lines 5 and Line 6

show the benefits brought by the attribute sub-branch and the phrase-guided attentional pooling

in our subject module. We find the attentional pooling (Line 6) greatly improves on the person

category (testA of RefCOCO and RefCOCO+), demonstrating the advantage of modular attention

on understanding localized details like “girl with red hat”.

Third, we tried training our model using 3 hard-coded phrases from a template language

parser Kazemzadeh et al. (2014), shown in Line 7 of Table. 3.12, which is ∼5% lower than our

60

Expression=“dude with 9”

Expression=“boy with striped shirt”

Expression=“man standing behind person hitting ball”

(a) RefCOCO

(b) RefCOCO+

(c) RefCOCOg

Lang. attention Subj. attentionComprehension

Figure 3.14: Examples of incorrect comprehensions. Red dotted boxes show our wrong predic-
tion.

end-to-end model (Line 6). The main reason for this drop is errors made by the external parser

which is not tuned for referring expressions.

Fourth, we show results using automatically detected objects from Faster R-CNN, providing

an analysis of fully automatic comprehension performance. Table. 3.13 shows the ablation study

of fully-automatic MAttNet. While performance drops due to detection errors, the overall im-

provements brought by each module are consistent with Table. 3.12, showing the robustness of

MAttNet. Our results also outperform the state-of-the-art Yu et al. (2017b) (Line 1,2) with a big

margin. Besides, we show the performance when using the detector branch of Mask R-CNN He

et al. (2017) (res101-mrcn) in Line 9, whose results are even better than using Faster R-CNN.

Finally, we show some example visualizations of comprehension using our full model in

Fig. 3.13 as well as visualizations of the attention predictions. We observe that our language

model is able to attend to the right words for each module even though it is learned in a weakly-

supervised manner. We also observe the expressions in RefCOCO and RefCOCO+ describe the

location or details of the target object more frequently while RefCOCOg mentions the relation-

ship between target object and its surrounding object more frequently, which accords with the

dataset property. Note that for some complex expressions like “woman in plaid jacket and blue

pants on skis” which contains several relationships (last row in Fig. 3.13), our language model is

61

RefCOCO
Model Backbone Net Split Pr@0.5 Pr@0.6 Pr@0.7 Pr@0.8 Pr@0.9 IoU

D+RMI+DCRF Liu et al. (2017a) res101-DeepLab val 42.99 33.24 22.75 12.11 2.23 45.18
MAttNet res101-mrcn val 75.16 72.55 67.83 54.79 16.81 56.51

D+RMI+DCRF Liu et al. (2017a) res101-DeepLab testA 42.99 33.59 23.69 12.94 2.44 45.69
MAttNet res101-mrcn testA 79.55 77.60 72.53 59.01 13.79 62.37

D+RMI+DCRF Liu et al. (2017a) res101-DeepLab testB 44.99 32.21 22.69 11.84 2.65 45.57
MAttNet res101-mrcn testB 68.87 65.06 60.02 48.91 21.37 51.70

RefCOCO+
Model Backbone Net Split Pr@0.5 Pr@0.6 Pr@0.7 Pr@0.8 Pr@0.9 IoU

D+RMI+DCRF Liu et al. (2017a) res101-DeepLab val 20.52 14.02 8.46 3.77 0.62 29.86
MAttNet res101-mrcn val 64.11 61.87 58.06 47.42 14.16 46.67

D+RMI+DCRF Liu et al. (2017a) res101-DeepLab testA 21.22 14.43 8.99 3.91 0.49 30.48
MAttNet res101-mrcn testA 70.12 68.48 63.97 52.13 12.28 52.39

D+RMI+DCRF Liu et al. (2017a) res101-DeepLab testB 20.78 14.56 8.80 4.58 0.80 29.50
MAttNet res101-mrcn testB 54.82 51.73 47.27 38.58 17.00 40.08

RefCOCOg
Model Backbone Net Split Pr@0.5 Pr@0.6 Pr@0.7 Pr@0.8 Pr@0.9 IoU

MAttNet res101-mrcn val 64.48 61.52 56.50 43.97 14.67 47.64
MAttNet res101-mrcn test 65.60 62.92 57.31 44.44 12.55 48.61

Table 3.14: Comparison of segmentation performance on RefCOCO, RefCOCO+, and our results
on RefCOCOg.

able to attend to the portion that should be used by the “in-box” subject module and the portion

that should be used by the “out-of-box” relationship module. Additionally our subject module

also displays reasonable spatial “in-box” attention, which qualitatively explains why attentional

pooling (Table. 3.12 Line 6) outperforms average pooling (Table. 3.12 Line 5). For compari-

son, some incorrect comprehension are shown in Fig. 3.14. Most errors are due to sparsity in the

training data, ambiguous expressions, or detection error.

3.5.2.2 Segmentation from Referring Expression

Our model can also be used to address referential object segmentation Hu et al. (2016a);

Liu et al. (2017a). Instead of using Faster R-CNN as the backbone net, we now turn to res101-

based Mask R-CNN He et al. (2017) (res101-mrcn). We apply the same procedure described in

Sec. 3.5.1 on the detected objects, and use the one with highest matching score as our prediction.

Then we feed the predicted bounding box to the mask branch to obtain a pixel-wise segmentation.

We evaluate the full model of MAttNet and compare with the best results reported in Liu et al.

62

Expression=“the tennis player in red shirt”

(a) RefCOCO

(b) RefCOCO+

(c) RefCOCOg

Expression=“brown and white horse”

Expression=“a woman with full black tops”

Expression=“woman with short red hair”

Expression=“right kid” Expression=“left elephant”

Figure 3.15: Examples of fully-automatic MAttNet referential segmentation.

(2017a). We use Precision@X (X ∈ {0.5, 0.6, 0.7, 0.8, 0.9})3 and overall Intersection-over-

Union (IoU) as metrics. Results are shown in Table. 3.14 with our model outperforming state-of-

the-art results by a large margin under all metrics4. As both Liu et al. (2017a) and MAttNet use

res101 features, such big gains may be due to our proposed model. We believe decoupling box

localization (comprehension) and segmentation brings a large gain over FCN-style Long et al.

(2015) foreground/background mask classification Hu et al. (2016a); Liu et al. (2017a) for this

instance-level segmentation problem, but a more end-to-end segmentation system may be studied

in future work. Some referential segmentation examples are shown in Fig. 3.15.

3 Precision@0.5 is the percentage of expressions where the IoU of the predicted segmentation and ground-truth is at
least 0.5.

4 There is no experiments on RefCOCOg’s val/test splits in Liu et al. (2017a), so we show our performance only for
reference in Table 3.14.

63

CHAPTER 4: ALBUM SUMMARIZATION AND STORYTELLING

In this chapter, we address the problem of end-to-end visual storytelling. Given a photo al-

bum, our model first selects the most representative (summary) photos, and then composes a

natural language story for the album. For this task, we make use of the Visual Storytelling dataset

and a model composed of three hierarchically-attentive Recurrent Neural Nets Yu et al. (2017a)

to: encode the album photos, select representative (summary) photos, and compose the story.

Automatic and human evaluations show our model achieves better performance on selection,

generation, and retrieval than baselines.

4.1 Introduction

Since we first developed language, humans have always told stories. Fashioning a good story

is an act of creativity and developing algorithms to replicate this has been a long running chal-

lenge. Adding pictures as input can provide information for guiding story construction by offer-

ing visual illustrations of the storyline. In the related task of image captioning, most methods try

to generate descriptions only for individual images or for short videos depicting a single activity.

Very recently, datasets have been introduced that extend this task to longer temporal sequences

such as movies or photo albums Rohrbach et al. (2016b); Pan et al. (2016); Lu and Grauman

(2013); Huang et al. (2016).

The type of data we consider in this work provides input illustrations for story generation

in the form of photo albums, sampled over a few minutes to a few days of time. For this type

of data, generating textual descriptions involves telling a temporally consistent story about the

depicted visual information, where stories must be coherent and take into account the temporal

64

context of the images. Applications of this include constructing visual and textual summaries of

albums, or even enabling search through personal photo collections to find photos of life events.

Previous visual storytelling works can be classified into two types, vision-based and language-

based, where image or language stories are constructed respectively. Among the vision-based

approaches, unsupervised learning is commonly applied: e.g., Sigurdsson et al. (2016) learns the

latent temporal dynamics given a large amount of albums, and Kim and Xing (2014) formulate

the photo selection as a sparse time-varying directed graph. However, these visual summaries

tend to be difficult to evaluate and selected photos may not agree with human selections. For

language-based approaches, a sequence of natural language sentences are generated to describe a

set of photos. To drive this work Park and Kim (2015) collected a dataset mined from Blog Posts.

However, this kind of data often contains contextual information or loosely related language. A

more direct dataset was recently released Huang et al. (2016), where multi-sentence stories are

collected describing photo albums via Amazon Mechanical Turk.

In this work, we make use of the Visual Storytelling Dataset Huang et al. (2016). While the

authors provide a seq2seq baseline, they only deal with the task of generating stories given 5-

representative (summary) photos hand-selected by people from an album. Instead, we focus on

the more challenging and realistic problem of end-to-end generation of stories from entire albums.

This requires us to either generate a story from all of the album’s photos or to learn selection

mechanisms to identify representative photos and then generate stories from those summary

photos. We evaluate each type of approach.

Ultimately, we propose a model of hierarchically-attentive recurrent neural nets, consisting

of three RNN stages. The first RNN encodes the whole album context and each photo’s content,

the second RNN provides weights for photo selection, and the third RNN takes the weighted

representation and decodes to the resulting sentences. Note that during training, we are only

given the full input albums and the output stories, and our model needs to learn the summary

photo selections latently.

65

Figure 4.1: Model: the album encoder is a bi-directional GRU-RNN that encodes all album
photos; the photo selector computes the probability of each photo being the tth album-summary
photo; and finally, the story generator outputs a sequence of sentences that combine to tell a story
for the album.

We show that our model achieves better performance over baselines under both automatic

metrics and human evaluations. As a side product, we show that the latent photo selection also

reasonably mimics human selections. Additionally, we propose an album retrieval task that can

reliably pick the correct photo album given a sequence of sentences, and find that our model also

outperforms the baselines on this task.

4.2 Related Work

Recent years have witnessed an explosion of interest in vision and language tasks, reviewed

below.

Visual Captioning: Most recent approaches to image captioning Vinyals et al. (2015b); Xu

et al. (2015) have used CNN-LSTM structures to generate descriptions. For captioning video or

movie content Venugopalan et al. (2015); Pan et al. (2016), sequence-to-sequence models are

widely applied, where the first sequence encodes video frames and the second sequence decodes

the description. Attention techniques Xu et al. (2015); Yu et al. (2016a); Yao et al. (2015) are

commonly incorporated for both tasks to localize salient temporal or spatial information.

66

Video Summarization: Similar to documentation summarization Rush et al. (2015); Cheng

and Lapata (2016); Mei et al. (2016); Woodsend and Lapata (2010) which extracts key sentences

and words, video summarization selects key frames or shots. While some approaches use unsu-

pervised learning Lu and Grauman (2013); Khosla et al. (2013) or intuitive criteria to pick salient

frames, recent models learn from human-created summaries Gygli et al. (2015); Zhang et al.

(2016b,a); Gong et al. (2014a). Recently, to better exploit semantics, Choi et al. (2017) proposed

textually customized summaries.

Visual Storytelling: Visual storytelling tries to tell a coherent visual or textual story about

an image set. Previous works include storyline graph modeling Kim and Xing (2014), unsuper-

vised mining Sigurdsson et al. (2016), blog-photo alignment Kim et al. (2015), and language

re-telling Huang et al. (2016); Park and Kim (2015). While Park and Kim (2015) collects data by

mining Blog Posts, Huang et al. (2016) collects stories using Mechanical Turk, providing more

directly relevant stories.

4.3 Model

Our model (Fig. 4.1) is composed of three modules: Album Encoder, Photo Selector, and

Story Generator, jointly learned during training.

4.3.1 Album Encoder

Given an album A = {a1, a2, ..., an}, composed of a set of photos, we use a bi-directional

RNN to encode the local album context for each photo. We first extract the 2048-dimensional

visual representation fi ∈ Rk for each photo using ResNet101 He et al. (2016), then a bi-

directional RNN is applied to encode the full album. Following Huang et al. (2016), we choose

a Gated Recurrent Unit (GRU) as the RNN unit to encode the photo sequence. The sequence

output at each time step encodes the local album context for each photo (from both directions).

Fused with the visual representation followed by ReLU, our final photo representation is (top

module in Fig. 4.1):

67

fi = ResNet(ai)

~hi = ~GRUalbum(fi,~hi−1)

~hi = ~GRUalbum(fi, ~hi+1)

vi = ReLU([~hi, ~hi] + fi).

4.3.2 Photo Selector

The Photo Selector (illustrated in the middle yellow part of Fig. 4.1) identifies representative

photos to summarize an album’s content. As discussed, we do not assume that we are given the

ground-truth album summaries during training, instead regarding selection as a latent variable

in the end-to-end learning. Inspired by Pointer Networks Vinyals et al. (2015a), we use another

GRU-RNN to perform this task. Note while the pointer network requires grounding labels, we

regard the labels as latent variables.

Given the album representation V n×k, the photo selector outputs probabilities pt ∈ Rn (likeli-

hood of selection as t-th summary image) for all photos using soft attention.

h̄t = GRUselect(pt−1, h̄t−1),

p(yai(t) = 1) = σ(MLP([h̄t, vi])),

At each summarization step, t, the GRU takes the previous pt−1 and previous hidden state as in-

put, and outputs the next hidden state h̄t. h̄t is fused with each photo representation vi to compute

the ith photo’s attention pit = p(yai(t) = 1). At test time, we simply pick the photo with the

highest probability to be the summary photo at step t.

68

4.3.3 Story Generator

To generate an album’s story, given the album representation matrix V and photo summary

probabilities pt from the first two modules, we compute the visual summary representation gt ∈

Rk (for the t-th summary step). This is a weighted sum of the album representations, i.e., gt =

pTt V . Each of these 5 gt embeddings (for t = 1 to 5) is then used to decode 1 of the 5 story

sentences respectively, as shown in the blue part of Fig. 4.1.

Given a story S = {st}, where st is t-th summary sentence. Following Donahue et al. (2015),

the l-th word probability of the t-th sentence is:

wt,l−1 = West,l−1,

h̃t,l = GRUstory(wt,l−1, gt, h̃t,l−1),

p(st,l) = softmax(MLP(h̃t,l)),

(4.1)

where We is the word embedding. The GRU takes the joint input of visual summarization gt,

the previous word embedding wt,l, and the previous hidden state, then outputs the next hidden

state. The generation loss is then the sum of the negative log likelihoods of the correct words:

Lgen(S) = −
∑T

t=1

∑Lt

l=1 log pt,l(st,l).

To further exploit the notion of temporal coherence in a story, we add an order-preserving

constraint to order the sequence of sentences within a story (related to the story-sorting idea

in Agrawal et al. (2016)). For each story S we randomly shuffle its 5 sentences to generate nega-

tive story instances S ′. We then apply a max-margin ranking loss to encourage correctly-ordered

stories: Lrank(S, S ′) = max(0,m− log p(S ′) + log p(S)). The final loss is then a combination of

the generation and ranking losses:

L = Lgen(S) + λLrank(S, S
′). (4.2)

69

beam size=3
Bleu3 Rouge Meteor CIDEr

enc-dec 19.58 29.23 33.02 4.65
enc-attn-dec 19.73 28.94 32.98 4.96
h-attn 20.53 29.82 33.81 6.84
h-attn-rank 20.78 29.82 33.94 7.38
h-(gd)attn-rank 21.02 29.53 34.12 7.51

Table 4.1: Story generation evaluation.

enc-dec (29.50%) h-attn-rank (70.50%)
enc-attn-dec (30.75%) h-attn-rank (69.25%)
h-attn-rank (30.50%) gd-truth (69.50%)

Table 4.2: Human evaluation showing how often people prefer one model over the other.

4.4 Experiments

We use the Visual Storytelling Dataset Huang et al. (2016), consisting of 10,000 albums

with 200,000 photos. Each album contains 10-50 photos taken within a 48-hour span with two

annotations: 1) 2 album summarizations, each with 5 selected representative photos, and 2) 5

stories describing the selected photos.

4.4.1 Story Generation

This task is to generate a 5-sentence story describing an album. We compare our model with

two sequence-to-sequence baselines: 1) an encoder-decoder model (enc-dec), where the sequence

of album photos is encoded and the last hidden state is fed into the decoder for story genera-

tion, 2) an encoder-attention-decoder model Xu et al. (2015) (enc-attn-dec) with weights com-

puted using a soft-attention mechanism. At each decoding time step, a weighted sum of hidden

states from the encoder is decoded. For fair comparison, we use the same album representation

(Sec. 4.3.1) for the baselines.

We test two variants of our model trained with and without ranking regularization by control-

ling λ in our loss function, denoted as h-attn (without ranking), and h-attn-rank (with ranking).

Evaluations of each model are shown in Table 4.1. The h-attn outperforms both baselines, and

h-attn-rank achieves the best performance for all metrics. Note, we use beam-search with beam

70

precision recall
DPP 43.75% 27.41%
enc-attn-dec 38.53% 24.25%
h-attn 42.85% 27.10%
h-attn-rank 45.51% 28.77%

Table 4.3: Album summarization evaluation.

R@1 R@5 R@10 MedR
enc-dec 10.70% 29.30% 41.40% 14.5
enc-attn-dec 11.60% 33.00% 45.50% 11.0
h-attn 18.30% 44.50% 57.60% 6.0
h-attn-rank 18.40% 43.30% 55.50% 7.0

Table 4.4: 1000 album retrieval evaluation.

size=3 during generation for a reasonable performance-speed trade-off (we observe similar im-

provement trends with beam size = 1).1 To test performance under optimal image selection, we

use one of the two ground-truth human-selected 5-photo-sets as an oracle to hard-code the photo

selection, denoted as h-(gd)attn-rank. This achieves only a slightly higher Meteor compared to

our end-to-end model.

Additionally, we also run human evaluations in a forced-choice task where people choose

between stories generated by different methods. For this evaluation, we select 400 albums, each

evaluated by 3 Turkers. Results are shown in Table 4.2. Experiments find significant preference

for our model over both baselines. As a simple Turing test, we also compare our results with

human written stories (last row of Table 4.2), indicating room for improvement of methods.

4.4.2 Album Summarization

We evaluate the precision and recall of our generated summaries (output by the photo selec-

tor) compared to human selections (the combined set of both human-selected 5-photo stories).

For comparison, we evaluate enc-attn-dec on the same task by aggregating predicted attention

and selecting the 5 photos with highest accumulated attention. Additionally, we also run DPP-

1 We also compute the p-value of Meteor on 100K samples via the bootstrap test Efron and Tibshirani (1994), as
Meteor has better agreement with human judgments than Bleu/Rouge Huang et al. (2016). Our h-attn-rank model
has strong statistical significance (p = 0.01) over the enc-dec and enc-attn-dec models (and is similar to the h-attn
model).

71

based video summarization Kulesza et al. (2012) using the same album features. Our models

have higher performance compared to baselines as shown in Table 4.3 (though DPP also achieves

strong results, indicating that there is still room to improve the pointer network).

4.4.3 Output Example Analysis

Fig. 4.2 and Fig. 4.3 shows several output examples of the joint album summarization and

storytelling generation. We compare our full model h-attn-rank with the baseline enc-attn-dec,

as both models are able to do the album summarization and story generation tasks jointly. In

Fig. 4.2 and Fig. 4.3, we use blue dashed box and red box to indicate the album summarization

by the two models. As reference, we also show the ground-truth album summaries by randomly

selecting 1 out of 2 human album summaries, which are highlighted with green box. Below each

album are their generated stories.

4.4.4 Album Retrieval

Given a human-written story, we introduce a task to retrieve the album described by that

story. We randomly select 1000 albums and one ground-truth story from each for evaluation.

Using the generation loss, we compute the likelihood of each album Am given the query story

S and retrieve the album with the highest generation likelihood, A = argmaxAm
p(S|Am). We

use Recall@k and Median Rank for evaluation. As shown in Table 4.4), we find that our models

outperform the baselines, but the ranking term in Eqn.4.2 does not improve performance signifi-

cantly.

72

Figure 4.2: Examples of album summarization and storytelling by enc-attn-dec (blue), h-attn-
rank (red), and ground-truth (green). We randomly select 1 out of 2 human album summaries as
ground-truth here.

73

Figure 4.3: More examples of album summarization and storytelling by enc-attn-dec (blue), h-
attn-rank (red), and ground-truth (green). We randomly select 1 out of 2 human album summaries
as ground-truth here.

74

CHAPTER 5: MULTI-TARGET EMBODIED QUESTION ANSWERING

Embodied Question Answering (EQA) is a relatively new task where an agent is asked to an-

swer questions about its environment from egocentric perception. EQA as introduced in Das et al.

(2018a) makes the fundamental assumption that every question, e.g. “what color is the car?”, has

exactly one target (“car”) being inquired about. This assumption puts a direct limitation on the

abilities of the agent.

We present a generalization of EQA – Multi-Target EQA (MT-EQA) Yu et al. (2019). Specif-

ically, we study questions that have multiple targets in them, such as “Is the dresser in the bed-

room bigger than the oven in the kitchen?”, where the agent has to navigate to multiple locations

(“dresser in bedroom”, “oven in kitchen”) and perform comparative reasoning (“dresser” bigger

than “oven”) before it can answer a question. Such questions require the development of entirely

new modules or components in the agent. To address this, we propose a modular architecture

composed of a program generator, a controller, a navigator, and a VQA module. The program

generator converts the given question into sequential executable sub-programs; the navigator

guides the agent to multiple locations pertinent to the navigation-related sub-programs; and the

controller learns to select relevant observations along its path. These observations are then fed

to the VQA module to predict the answer. We perform detailed analysis for each of the model

components and show that our joint model can outperform previous methods and strong baselines

by a significant margin.

5.1 Introduction

One of the grand challenges of AI is to build intelligent agents that visually perceive their

surroundings, communicate with humans via natural language, and act in their environments to

75

living room

garage

dining room

kitchen

bathroombedroom
EQA-v1: What color is the car?

MT-EQA: Does the dressing table in the bedroom
have same color as the sink in the bathroom?

Answer: Orange

Answer: No

T-1

T-2

T-3

T-4

T-1 T-2

T-3 T-4

T-1

T-1

Figure 5.1: Difference between EQA-v1 and MT-EQA. While EQA-v1’s question asks about a
single target “car”, MT-EQA’s question involves multiple targets (e.g., bedroom, dressing table,
bathroom, sink) to be navigated, and attribute comparison between multiple targets (e.g., dressing
table and sink).

accomplish tasks. In the vision, language, and AI communities, we are witnessing a shift in focus

from internet vision to embodied AI – with the creation of new tasks and benchmarks Chaplot

et al. (2018); Anderson et al. (2018b); Gupta et al. (2017); Zhu et al. (2017a), instantiated on new

simulation platforms Kolve et al. (2017); Savva et al. (2017); Wu et al. (2018); Xia et al. (2018);

Kempka et al. (2016); Brodeur et al. (2017).

The focus of this work is one such embodied AI task, Embodied Question Answering (EQA) Das

et al. (2018a), which tests an agent’s overall ability to jointly perceive its surrounding, communi-

cate with humans, and act in a physical environment. Specifically, in EQA, an agent is spawned

in a random location within an environment and is asked a question about something in that en-

vironment, for example “What color is the lamp?”. In order to answer the question correctly,

the agent needs to parse and understand the question, navigate to a good location (looking at the

“lamp”) based on its first-person perception of the environment and predict the right answer (e.g.

“blue”).

However, there is still much left to be done in EQA. In its original version, the EQA-v1

dataset only consists of single-target question-answer pairs, such as “What color is the car?”.

The agent just needs to find the car then check its color based on its last observed frames. How-

76

ever, the single target constraint places a direct limitation on the possible set of tasks that the AI

agent can tackle. For example, consider the question “Is the kitchen larger than the bedroom?”

in EQA-v1; the agent would not be able to answer this question because it involves navigating

to multiple targets –“kitchen” and “bedroom” – and the answer requires comparative reasoning

between the two rooms, where all of these skills are not part of the original EQA task.

In this work, we present a generalization of EQA – multi-target EQA (MT-EQA). Specifi-

cally, we study questions that have multiple implicit targets in them, such as “Is the dresser in

the bedroom bigger than the oven in the kitchen?”. At a high-level, our work is inspired by the

visual reasoning work of Neural Modular Networks Andreas et al. (2016b) and CLEVR Johnson

et al. (2017a). These works study compositional and modular reasoning in a fully-observable

environment (an image). Our work may be viewed as embodied visual reasoning, where an agent

is asked a question involving multiple modules and needs to gather information before it can

execute them. In MT-EQA, we propose 6 types of compositional questions which compare at-

tribute properties (color, size, distance) between multiple targets (objects/rooms). Fig. 5.1 shows

an example from the MT-EQA dataset and contrasts it to the original EQA-v1 dataset.

The assumption in EQA-v1 of decoupling navigation from question-answering not only

makes the task simpler but is also reflected in the model used – the EQA-v1 model simply con-

sists of an LSTM navigator which after stopping, hands over frames to a VQA module. In con-

trast, MT-EQA introduces new modeling challenges that we address in this work. Consider the

MT-EQA question in Fig. 5.1 – “Does the table in the bedroom have same color as the sink

in the bathroom?”. From this example, it is clear that not only is it necessary to have a tighter

integration between navigator and VQA, but we also need to develop fundamentally new mod-

ules. An EQA-v1 Das et al. (2018a) agent would navigate to the final target location and run the

VQA module based on its last sequence of frames along the path. In this case, only the “sink”

would be observed from the final frames but dressing table would be lost. Instead, we propose

a new model that consists of 4 components: (a) a program generator, (b) a navigator, (c) a con-

troller and (d) a VQA module. The program generator converts the given question into sequential

77

Q: Does the dressing table in the
Bedroom have same color as the
sink in the bathroom?

nav_room (bedroom)
nav_object (dressing table)
query (color)
nav_room (bathroom)
nav_object (sink)
query (color)
equal_color()

Program
generator

Figure 5.2: Program Generator.

executable sub-programs, as shown in Fig. 5.2. The controller executes these sub-programs se-

quentially and gives control to the navigator when the navigation sub-programs are invoked (e.g.

nav room(bedroom)). During navigation, the controller processes the first-person views ob-

served by the agent and predicts whether the target of the sub-program (e.g. bedroom) has been

reached. In addition, the controller extracts cues pertinent to the questioned property of the sub-

target, e.g. query(color). Finally, these cues are fed into the VQA module which deals with

the comparison of different attributes, e.g. executing equal color() by comparing the color

of dressing table and sink in Fig. 5.1.

Empirically, we show results for our joint model and analyze the performance of each of our

components. Our full model outperforms the baselines under almost every navigation and QA

metric by a large margin. We also report performance for the navigator, the controller, and the

VQA module, when executed separately in an effort to isolate and better understand the effective-

ness of these components. Our ablation studies show that our full model is better at all sub-tasks,

including room navigation, object navigation and final EQA accuracy. Additionally, we find quan-

titative evidence that MT-EQA questions on closer targets are relatively easier to solve as they

require shorter navigation, while questions for farther targets are harder.

5.2 Related Work

Our work relates to research in embodied perception and modular predictive models for pro-

gram execution.

Embodied Perception. Visual recognition from images has witnessed tremendous success

in recent years with the advent of deep convolutional neural networks (CNNs) Krizhevsky et al.

(2012); Szegedy et al. (2015); He et al. (2016) and large-scale datasets, such as ImageNet Rus-

78

sakovsky et al. (2015) and COCO Lin et al. (2014). More recently, we are beginning to witness

a resurgence of active vision. For example, end-to-end learning methods successfully predict

robotic actions from raw pixel data Levine et al. (2016). Gupta et al. Gupta et al. (2017) learn

to navigate via mapping and planning. Sadeghi & Levine Sadeghi and Levine (2017) teach an

agent to fly in simulation and show its performance in the real world. Gandhi et al. Dhiraj Gandhi

(2017) train self-supervised agents to fly from examples of drones crashing.

At the intersection of active perception and language understanding, several tasks have

been proposed, including instruction-based navigation Chaplot et al. (2018); Anderson et al.

(2018b), target-driven navigation Zhu et al. (2017b); Gupta et al. (2017), embodied question

answering Das et al. (2018a), interactive question answering Gordon et al. (2018), and task plan-

ning Zhu et al. (2017a). While these tasks are driven by different goals, they all require training

agents that can perceive their surroundings, understand the goal – either presented visually or in

language instructions – and act in a virtual environment. Furthermore, the agents need to show

strong generalization ability when deployed in novel unseen environments Gupta et al. (2017);

Wu et al. (2018).

Environments. There is an overbearing cost to developing real-world interactive benchmarks.

Undoubtedly, this cost has hindered progress in studying embodied tasks. On the contrary, vir-

tual environments that offer rich, efficient simulations of real-world dynamics, have emerged

as promising alternatives to potentially overcome many of the challenges faced in real-world

settings.

Recently there has been an explosion of simulated 3D environments in the AI community, all

tailored towards different skill sets. Examples include ViZDoom Kempka et al. (2016), TorchCraft Syn-

naeve et al. (2016) and DeepMind Lab Beattie et al. (2016). Just in the last year, simulated envi-

ronments of semantically complex, realistic 3D scenes have been introduced, such as HoME Brodeur

et al. (2017), House3D Wu et al. (2018), MINOS Savva et al. (2017), Gibson Xia et al. (2018)

and AI2THOR Kolve et al. (2017). In this work, we use House3D, following the original EQA

79

Question Type Template
E

Q
A

-v
1 location “What room is the <OBJ> located in?”

color “What color is the <OBJ>?”
color room “What color is the <OBJ> in the <ROOM>?”
preposition “What is <on/above/below/next-to> the <OBJ> in the <ROOM>?”

M
T-

E
Q

A

object color compare inroom “Does <OBJ1> share same color as <OBJ2> in <ROOM>?”
object color compare xroom “Does <OBJ1> in <ROOM1> share same color as <OBJ2> in <ROOM2>?”
object size compare inroom “Is <OBJ1> bigger/smaller than <OBJ2> in <ROOM>?”
object size compare xroom “Is <OBJ1> in <ROOM1> bigger/smaller than <OBJ2> in <ROOM2>?”
object dist compare “Is <OBJ1> closer than/farther from <OBJ2> than <OBJ3> in <ROOM>?”
room size compare “Is <ROOM1> bigger/smaller than <ROOM2> in the house?”

Table 5.1: Question types and the associated templates used in EQA-v1 and MT-EQA.

task Das et al. (2018a). House3D is a rich, interactive 3D environment based on human-designed

indoor scenes sourced from SUNCG Song et al. (2017).

Modular Models. Neural module networks were originally introduced for visual question

answering Andreas et al. (2016b). These networks decompose a question into several compo-

nents and dynamically assemble a network to compute the answer, dealing with variable com-

positional linguistic structures. Since their introduction, modular networks have been applied to

several other tasks: visual reasoning Hu et al. (2017a); Johnson et al. (2017b), relationship model-

ing Hu et al. (2017b), embodied question answering Das et al. (2018b), multitask reinforcement

learning Andreas et al. (2017), language grounding on images Yu et al. (2018) and video under-

standing Liu et al. (2018). Inspired by Das et al. (2018c); Johnson et al. (2017b), we cast EQA

as a partially observable version of CLEVR and extend the modular idea to this task, which we

believe requires an increasingly modular model design to address visual reasoning within a 3D

environment.

5.3 Multi-Target EQA Dataset

We now describe our proposed Multi-Target Embodied Question Answering (MT-EQA)

task and associated dataset, contrasting it against EQA-v1. In v1 Das et al. (2018a), the authors

select 750 (out of about 45,000) environments for the EQA task. Four types of questions are

proposed, each questioning a property (color, location, preposition) of a single target (room,

80

Question Type Functional Form

object color compare select(rooms)→ unique(rooms)→ select(objects)→ unique(objects)→ pair(objects)→ query(color compare)
object size compare select(rooms)→ unique(rooms)→ select(objects)→ unique(objects)→ pair(objects)→query(size compare)
object dist compare select(rooms)→ unique(rooms)→ select(objects)→ unique(objects)→ triplet(objects)→query(dist compare)
room size compare select(rooms)→ unique(rooms)→ pair(rooms)→ query(size compare)

Table 5.2: Functional forms of all question types in the MT-EQA dataset. Note that for
each object color/size comparison question type, there exists two modes: inroom and
xroom, depending on whether the two objects are in the same room or not. For example, ob-
ject color compare xroom compares the color of two objects in two different rooms.

object), as shown at the top of Table. 5.1. Our proposed MT-EQA task generalizes EQA-v1 and

involves comparisons of various attributes (color, size, distance) between multiple targets, shown

at the bottom of Table. 5.1. Next, we describe in detail the generation process, as well as useful

statistics of MT-EQA.

5.3.1 Multi-Target EQA Generation

We generate question-answer pairs using the annotations available on SUNCG. We use the

same number of rooms and objects as EQA-v1 (see Figure 2 in Das et al. (2018a)). Each question

in MT-EQA is represented as a series of functional programs, which can be executed on the

environment to yield a ground-truth answer. The functional programs consist of some elementary

operations, e.g., select(), unique(), object color pair(), query(), etc., that operate on the room and

object annotations.

Each question type is associated with a question template and a sequence of operations. For

example, consider the question type in MT-EQA object color compare, whose template is “Does

<OBJ1> share same color as <OBJ2> in <ROOM>?”. Its sequence of elementary operations

is: select(rooms)→ unique(rooms)→ select(objects)→ unique(objects)→ pair(objects)→

query(color compare).

The first function, select(rooms), returns all rooms in the environment. The second func-

tion, unique(rooms), selects a single unique room from the list to avoid ambiguity. Similarly,

the third function, select(objects), and fourth function, unique(objects), return unique objects

81

random q-LSTM q-NN q-BoW “no”

Test Acc. (%) 49.44 48.24 53.74 49.22 53.28

Table 5.3: EQA (test) accuracy using questions and priors.

in the selected room. The fifth function, pair(objects), pairs the objects. The final function,

query(color compare), compares their colors.

We design 6 types of questions comparing different attributes between objects (inside same

room/across different rooms), distance comparison, and room size comparison. All question

types and templates are shown in Table 5.2.

In some cases, a question instantiation returned from the corresponding program, as shown

above, might not be executable, as rooms might be disconnected or not reachable. To check if a

question is feasible, we execute the corresponding nav room() and nav object() programs

and compute shortest paths connecting the targets in the question. If there is no path1, it means

the agent would not be able to look at all targets starting from its given spawn location. We filter

out such impossible questions.

For computing the shortest path connecting the targets, we need to find the position (x, y, z, yaw)

that best views each target. In order to do so, we first sample 100 positions near the target. For

each position, we pick the yaw angle that looks at the target with the highest Intersection-Over-

Union (IOU), computed using the target’s mask2 and a centered rectangular mask. Fig. 5.3 shows

4 IOU scores of coffee machine and refrigerator from different positions. We sort the 100 posi-

tions and pick the one with highest IOU as the best-view position of the target, which is used to

connect the shortest-path. For each object, its highest IOU value IOUbest is recorded for evalua-

tion purposes (as a reference of the target’s best-view).

To minimize the bias in MT-EQA, we perform entropy-filtering, similar to Das et al. (2018a).

Specifically for each unique question, we compute its answer distribution across the whole

1 This is a result of noisy annotations in SUNCG and inaccurate occupancy maps due to the axis-aligned assumption
returned by House3D.

2 House3D returns the the ground-truth semantic segmentation for each first-person view.

82

IOU=0.618 IOU=0.181 IOU=0.316IOU=0.431

(a) coffee machine (b) refrigerator

Figure 5.3: IOU between the target’s mask and the centered rectangle mask. Higher IOU is
achieved when the target has larger portion in the center of the view.

Houses Unique
questions

Total
questions

train 486 2,030 14,495
val 50 938 1,954
test 52 1,246 2,838

obj_color_comp_inroom
24%

obj_color_comp_xroom
45%

obj_size_comp_inroom
5%

obj_size_comp_xroom
10%

obj_dist_comp
13%

room_dist_comp
3%

Figure 5.4: Overview of MT-EQA dataset including split statistics and question type distribution.

dataset. We exclude questions whose normalized answer distribution entropy is below 0.93. This

prevents the agent from memorizing easy question-answer pairs without looking at the envi-

ronment. For example, the answer to “is the bed in the living room bigger than the cup in the

kitchen?” is always Yes. Such questions are excluded from our dataset. After the two filtering

stages, the MT-EQA questions are both balanced and feasible.

In addition, we check if MT-EQA is easily addressed by question-only or prior-only baselines.

For this, we evaluate four question-based models: (a) an LSTM-based question-to-answer model,

(b) a nearest neighbor (NN) baseline that finds the NN question from the training set and uses its

most frequent answer as the prediction, (c) a bag-of-words (BoW) model that encodes a question

followed by a learned linear classifier to predict the answer and (d) a naive “no” only answer

model, since “no” is the most frequent answer by a slight margin. Table. 5.3 shows the results.

There exists very little bias on the “yes/no” distribution (53.28%), and all question-based models

make close to random predictions. In comparison, and as we empirically show in Sec. 5.5, our

3 Rather than 0.5 in Das et al. (2018a), we set the normalized entropy threshold as 0.9 (maximum is 1) since all of
our questions have binary answers.

83

1) nav object(phrase) 2) nav room(phrase)
3) query(color / size / room size)
4) equal color()
5) object size compare(bigger / smaller)
6) object dist compare(farther / closer)
7) room size compare(bigger / smaller)

Table 5.4: MT-EQA executable programs.

results are far better than these baselines, indicating the necessity to explore the environment in

order to answer the question. Besides, the results also address the concern in Anand et al. (2018)

where language-only models (BoW and NN) already form competitive baselines for EQA-v1.

In MT-EQA, these baselines perform close to chance as a result of the balanced binary question-

answer pairs in MT-EQA.

Overall, our MT-EQA dataset consists of 19,287 questions across 588 environments4, refer-

ring to a total of 61 unique object types in 8 unique room types. Fig. 5.4 shows the question type

distribution. Approximately 32 questions are asked for each house on average, 209 at most and

1 at fewest. There are relatively fewer object size compare and room size compare questions

as many frequently occurring comparisons are too easy to guess without exploring the environ-

ment and thus fail the entropy filtering. We will release the MT-EQA dataset and the generation

pipeline.

5.4 Model

Our model is composed of 4 modules: the question-to-program generator, the navigator, the

controller, and the VQA module. We describe these modules in detail.

5.4.1 Program Generator

The program generator takes the question as input and generates sequential programs for

execution. We define 7 types of executable programs for the MT-EQA task in Table. 5.4. For

4 The 588 environments are subset of EQA-v1’s. Some environments are discarded due to entropy filtering and
unavailable paths.

84

Ctrl CtrlCtrlCtrlCtrlCtrlCtrl Ctrl Ctrl Ctrl Ctrl Ctrl Ctrl

CNN CNN CNN CNN CNN CNN CNN CNN CNN CNN CNN CNN

Nav Nav Nav Nav Nav Nav Nav NavNav Nav Nav Nav Nav

Q: Does the bathtub have same color
as the sink in the bathroom?

Program
generator

nav_room (bathroom)
nav_object (bathtub)
query (color)
nav_object (sink)
query (color)
equal (color)

bathtub sink

CNN

bathroom

Query (color)

Query (color)

FC

FC

ReLU

ReLU
FC ReLU

op: equal

answer
FC

attr: color

VQA module

Figure 5.5: Model architecture: our model is composed of a program generator, a navigator, a
controller, and a VQA module.

example, “Is the bathtub the same color as the sink in the bathroom?” is decomposed into a

series of sequential sub-programs: nav room(bathroom)→ nav object(bathtub)

→ query color()→ nav object(sink)→ query color()→ equal color().

Similar to CLEVR Johnson et al. (2017a), the question programs are automatically generated in

a templated manner (Table. 5.2), making sub-component decomposition (converting questions

back to programs) simple (Table. 5.4). We use template-based rules by selecting and filling in

the arguments in Table. 5.4 to generate the programs (which is always accurate). While a neural

model could also be applied, a learned program generator is not the focus of our work.

5.4.2 Navigator

The navigator executes the nav room() and nav object() programs. As shown in

Fig. 5.6(a), we use an LSTM as our core component. At each time step, the LSTM takes as inputs

the current egocentric (first-person view) image, an encoding of the target phrase (e.g. “bathtub”

if the program is nav object(bathtub)), and the previous action, in order to predict the

next action.

The navigator uses a CNN feature extractor that takes a 224x224 RGB image returned from

the House3D renderer, and transforms it into a visual feature, which is then fed into the LSTM.

85

CNN

LSTM

target: bathtub

action: “turn left”

Prev. action

(a) Navigator

CNN

LSTM

“Select”

program

vqa feature

(b) Controller

Figure 5.6: Navigator and Controller.

Similar to Das et al. (2018a), the CNN is pre-trained under a multi-task framework consisting

of three tasks: RGB-value reconstruction, semantic segmentation, and depth estimation. Thus,

the extracted feature contains rich information about the scene’s appearance, content, and ge-

ometry (objects, color, texture, shape, and depth). In addition to the visual feature, the LSTM is

presented with two additional inputs. The first is the target embedding, where we use the aver-

age embedding of GloVE vectors Pennington et al. (2014) over words describing the target. The

second is previous action, which is in the form of a look-up from an action embedding matrix.

We want to note the different perceptual skills required for room and object navigation:

Room navigation relies on understanding the overall scene and finding cross-room paths (en-

try/exit), while object navigation requires localizing the target object within a room and finding

a path to reach it. To capture the difference, we implement two separate navigation modules,

nav room() and nav object() respectively. These two modules share same architecture but

are trained separately for different targets.

In MT-EQA, the action space for navigation consists of 3 action types: turning left (30 de-

grees), turning right (30 degrees), and moving forward. This is almost the same as EQA-v1 Das

et al. (2018a), except we use larger turning angles – as our navigation paths are much longer due

to the multi-target setting. We find that this change reduces the number of actions required for

navigation, leading to easier training.

86

5.4.3 Controller

The controller is the central module in our model, as it connects all of the other modules by:

1) creating a plan from the program generator, 2) collecting the necessary observations from the

navigator, and 3) invoking the VQA module.

Fig. 5.6 (b) shows the controller, whose key component is another LSTM. Consider the

question “Does the bathtub have same color as the sink in the bathroom?” with part of its pro-

gram as example – nav room(bathroom)→ nav object(bathtub). The controller

starts by calling the room navigator to look for “bathroom”. During navigation, the controller

keeps track of the first-person views, looking for the target. Particularly, it extracts the fea-

tures via CNN which are then fused with the target embedding as input to the LSTM. The con-

troller predicts SELECT if the target is found, stopping the current navigator, in our example

nav room(bathroom), and starting execution of the next program, nav object(bathtub).

Finally, after the object target “bathtub” has been found, the next program – query color(),

is executed. The controller extracts attribute features from the first-person view containing the

target. In all, there are three attribute types in MT-EQA - object’s color, object’s size, and room’s

size. Again, we treat object and room differently in our model. For object-specific attributes, we

use the hidden state of the controller at the location where SELECT was predicted. This state

should contain semantic information for the target, as it is where the controller is confident the

target is located. For room-specific attributes, the controller collects a panorama by asking the

navigator to rotate 360 degrees (by performing 12 turning-right actions) at the location where

SELECT is predicted. The CNN features from this panorama view are concatenated as the repre-

sentation.

During program execution by the controller, the extracted cues for all the targets are stored,

and in the end they are used by the VQA module to predict the final answer.

87

5.4.4 VQA Module

The final task requires reasoning, e.g., object size compare(bigger), equal color(),

etc. When the controller has gathered all of the targets for comparison, it invokes the VQA mod-

ule. As shown in top-right of Fig. 5.5, the VQA module embeds the stored features of multiple

targets into the question-attribute space, using a FC layer followed by ReLU. The transformed

features are then concatenated and fed into another FC+ReLU which is conditioned on the com-

parison operator (equal, bigger than, smaller than, etc.). The output is a binary prediction (yes/no)

for that attribute comparison. We call it compositional VQA (cVQA). The cVQA module in

Fig. 5.5 depicts a two-input comparison as an example, but our cVQA module also extends

to three inputs, for questions like “Is the refrigerator closer to the coffee machine than the mi-

crowave?”.

5.4.5 Training

Training follows a two-stage approach: First, the full model is trained using Imitation Learn-

ing (IL); Second, the navigator is further fine-tuned with Reinforcement Learning (RL) using

policy gradients.

First, we jointly train our full model using imitation learning. For imitation learning, we

treat the shortest paths and the key positions containing the targets as our ground-truth labels

for navigation and for the controller’s SELECT classifier, respectively. The objective function

consists of a navigation objective and a controller objective at every time step t, and a VQA

objective at the final step. For the i-th question, let P nav
i,t,a be action a’s probability at time t, P sel

i,t

be the controller’s SELECT probability at time t, and P vqa
i be the answer probability from VQA,

88

then we minimize the combined loss:

L = Lnav + αLctrl + βLvqa

= −
∑
i

∑
t

∑
a

yni,t,a logP nav
i,t,a︸ ︷︷ ︸

Cross-entropy on navigator action

−α
∑
i

∑
t

(yci,t logP sel
i,t + (1− yci,t) log(1− P sel

i,t))︸ ︷︷ ︸
Binary cross-entropy on controller’s SELECT

−β
∑
i

(yvi logP vqa
i + (1− yvi) log(1− P vqa

i))︸ ︷︷ ︸
Binary cross-entropy on VQA’s answer

.

Subsequently, we use RL to fine-tune the room and object navigators.

We provide two types of reward signals to the navigators. The first is a dense reward, cor-

responding to the agent’s progress toward the goal (positive if moving closer to the target and

negative if moving away). This reward is measured by the distance change in the 2D bird-view

distance space, clipped to lie within [−1.0, 1.0]. The second is a sparse reward that quantifies

whether the agent is looking at the target object when the episode is terminated. For object tar-

gets, we compute IOUT between the target’s mask and the centered rectangle mask at termination.

We use the best IOU score of the target IOUbest as reference and compute the ratio IOUT

IOUbest
. If the

ratio is greater than 0.5, we set the reward to 1.0 otherwise -1.0. For room targets, we assign

reward 0.2 to the agent if it is inside the target room at termination, otherwise -0.2.

5.5 Experiments

In this section we describe our experimental results. Since MT-EQA is a complex task and

our model is modular, we will show both the final results (QA accuracy) and the intermediate

performance (for navigation). Specifically, we first describe our evaluation setup and metrics for

MT-EQA. Then, we report the comparison of our model against several strong baselines. And

finally, we analyze variants of our model and provide ablation results.

89

5.5.1 Evaluation Setup and Metrics

Spawn Location. MT-EQA questions involve multiple targets (rooms/objects) to be found.

To prevent the agent from learning biases due to spawn location, we randomly select one of the

mentioned targets as reference and spawn our agent 10 actions (typically 1.9 meters) away.

EQA Accuracy. We compute overall accuracy as well as accuracy for each of the 6 types

of questions in our dataset. In addition, we also categorize question difficulty level into easy,

medium, and hard by binning the ground-truth action length. Easy questions are those with fewer

than 25 action steps along the shortest path, medium are those with 25-70 actions, and hard are

those with more than 70 actions. We report accuracy for each difficulty, %easy, %medium, %hard,

as well as overall, %overall, in Table 5.5.

Navigation Accuracy. We also measure the navigation accuracy for both objects and rooms

in MT-EQA. As each question involves several targets, the order of them being navigated matters.

We consider the ‘ground truth’ ordering of targets for navigation as the order in which they are

mentioned in the question, e.g., given “Does the bathtub have same color as the sink?”, the agent

is trained and evaluated for visiting the “bathtub” first and then the “sink”.

For each mentioned target object, we evaluate the agent’s navigation performance by com-

puting the distance to the target object at navigation termination, dT , and change in distance to

the target from initial spawned position to terminal position, d∆. We also compute the stop ratio

%stopo as in EQA-v1 Das et al. (2018a). Additionally, we propose two new metrics based on the

IOU of the target object at its termination. When the navigation is done, we compute the IOU

of the target w.r.t a centered rectangular box (see Fig. 5.3 as example). The first metric is mean

IOU ratio IOUr
T = 1

N

∑
i

IOUT (oi)
IOUbest(oi)

) where IOUbest(oi) is the highest IOU score for object oi. The

second is hit accuracy hT – we compute the percentage of the ratio IOUT (oi)/IOUbest(oi) greater

than 0.5, i.e., hT = 1
N

∑
i ||

IOUT (oi)
IOUbest(oi)

> 0.5||. Both metrics measure to what extent the agent is

looking at the target at termination.

For each mentioned target room, we evaluate the agent’s navigation by recording the percent-

age of agents terminating inside the target room %rT and the stop ratio %stopr.

90

Object Navigation Room Navigation EQA

dT d∆ hT IOUr
T %stopo %rT %stopr ep len %easy %medium %hard %overall

1 Nav+cVQA 5.41 -0.64 0.19 0.15 36 34 60 153.13 58.42 53.29 51.46 53.24
2 Nav(RL)+cVQA 3.80 0.10 0.33 0.30 46 40 62 144.80 67.57 55.91 53.28 57.40
3 Nav+Ctrl+cVQA 5.25 -0.56 0.20 0.18 36 37 70 145.20 59.73 53.48 49.04 54.44
4 Nav(RL)+Ctrl+cVQA 3.60 0.16 0.33 0.29 48 43 72 127.71 72.22 59.97 54.92 61.45

Table 5.5: Quantitative evaluation of object/room navigation and EQA accuracy for different
approaches.

object color compare object size compare object dist compare room size compare
%overall

inroom xroom inroom xroom inroom xroom

1 Nav+cVQA 64.15 52.47 57.85 55.68 49.38 48.37 53.24
2 Nav(RL)+cVQA 71.24 53.92 74.38 60.81 51.23 46.66 57.40
3 Nav+Ctrl+cVQA 66.41 52.65 57.85 53.48 49.38 48.37 54.44
4 Nav(RL)+Ctrl+cVQA 72.68 58.19 76.86 63.37 54.94 55.57 61.45

Table 5.6: EQA accuracy on each question type for different approaches.

For all the above metrics except for dT , larger is better. Additionally, we report the overall

number of action steps (episode length) executed for each question, i.e., ep len.

object color compare object size compare object dist compare room size compare
%overall

inroom xroom inroom xroom inroom xroom

1 [BestView] + attn-VQA (cnn) 71.16 59.56 65.29 65.93 58.64 49.74 60.50
2 [BestView] + cVQA (cnn) 82.92 72.70 80.99 83.88 69.75 64.32 74.14
3 [ShortestPath+BestView] + Ctrl + cVQA 90.70 85.49 82.64 88.64 68.52 71.87 82.88
4 [ShortestPath] + seq-VQA 53.32 54.44 51.24 50.55 47.53 49.74 52.36
5 [ShortestPath] + Ctrl + cVQA 76.09 69.11 75.21 79.49 64.20 61.23 69.77

Table 5.7: EQA accuracy of different approaches on each question type in oracle setting (given
shortest path or best-view images).

5.5.2 EQA Results

Nav+Ctrl+cVQA is our full model, which is composed of a program generator, a navigator,

a controller and a comparative VQA module. Another variant of our model, the REINFORCE

fine-tuned model is denoted as Nav(RL)+Ctrl+cVQA. We also train a simplified version of our

full model, Nav+cVQA. which does not use a controller. For this model, we let the navigator

predict termination whenever a target is detected, then feed its hidden states to the VQA model.

The training details are similar to our full model for both IL and RL. We show comparisons of

both navigation and EQA accuracy in Table. 5.5.

91

RL helps both navigation and EQA accuracies. Both object and room navigation perfor-

mance are improved after RL finetuning. We notice without finetuning d∆ for both models (Row

1 &3) are negative, which means the agent has moved farther away from the target during nav-

igation. After RL finetuning, d∆ jumps from −0.56 to 0.16 (Row 3 & 4). The hit accuracy also

improves from 20% to 33%, indicating that the RL-finetuned agent is more likely to find the

target mentioned in the question. Episode lengths from the stronger navigators are shorter, in-

dicating that better navigators find their target more quickly. And, higher EQA accuracy is also

achieved with the help of RL finetuning (from 54.44% to 61.45%). After breaking down the

EQA into different types, we observe the same trend in Table. 5.6 – our full model with RL far

outperforms the others.

Controller is important. Comparing our full model (Row 4) to the one without a controller

(Row 2), we notice that the former outperforms the latter across almost all the metrics. One pos-

sible reason is that the VQA task and navigation task are quite different, such that the features

(hidden state) from the navigator cannot help improve the VQA module. On the contrary, our

controller decouples the two tasks, letting the navigator and VQA module focus on their own

roles.

Questions with shorter ground-truth path are easier. We observe that our agent is far bet-

ter at dealing with easy questions than hard ones (72.22% over 54.92% in Table. 5.5 Row 4).

One reason is that the targets mentioned in the easy questions, e.g., sink and toilet in “Does the

sink have same color as the toilet in the bathroom?”, are typically closer to each other, thus are

relatively easier to be explored, whereas questions like “Is the kitchen bigger than the garage?”

requires a very long trajectory and the risk of missing one (kitchen or garage) is increased. The

same observation is found in Table. 5.6, where we get higher accuracy for “in-room” questions

than “cross-room” ones.

92

5.5.3 Oracle Comparisons

To better understand each module of our model, we run ablation studies. Table. 5.7 shows

EQA accuracy of different approaches given the shortest paths or best-view frames.

Our VQA module helps. We first compare the performance of our VQA module against

an attention-based VQA. Given the best view of each target, we can directly feed the features

from those images to the VQA module, using the CNN features instead of hidden states from

controller side. The attention-based VQA architecture is similar to Das et al. (2018a), which uses

an LSTM to encode questions and then uses its representation to pool image features with atten-

tion. Comparing the two methods in Table. 5.7, Row 1 & 2, our VQA module achieves 13.64%

higher accuracy. The benefit mainly comes from the decomposition of attribute representation

and comparison in our VQA module.

Controller’s features help. We compare the controller’s features to raw CNN features for

VQA. When given both shortest path and best-view position, we run our full model with these

annotations and feed the hidden states from the controller’s LSTM to our VQA model. As shown

in Table. 5.7, Row 2 & 3, the controller’s features are far better than raw CNN features, especially

for object color compare and object size compare question types.

Controller’s SELECT matters. Our controller predicts SELECT and extracts the features

at that moment. One possible question is how important is this moment selection. To demon-

strate its advantage, we trained another VQA module which uses a LSTM to encode the whole

sequence of frames along the shortest path and uses its final hidden state to predict the answer,

denoted as seq-VQA. The hypothesis is that the final hidden state might be able to encode all rele-

vant information, as the LSTM has gone through the whole sequence of frames. Table. 5.7, Row

4, shows its results, which is nearly random. On the contrary, when controller is used to SELECT

frames in Row 5, the results are far better. However, there is still much space for improvement.

Comparing Table. 5.7, Row 3 & 5, the overall accuracy drops 13% when using features from

the predicted SELECT instead of oracle moments, and 20% when using additional navigators

93

(comparing Table. 5.7, Row 3, & Table. 5.6, Row 4), indicating the necessity of both accurate

SELECT and navigation.

94

CHAPTER 6: DISCUSSION AND FUTURE WORK

6.1 Summary of Contributions

We have reviewed our recent work on vision and language, including Visual Madlibs as ques-

tion answering in Chapter 2, referring expression generation and comprehension in Chapter 3,

album summarization and storytelling in Chapter 4, and embodied question answering in Chap-

ter 5. There has been a great deal of progress on each of these tasks, largely due to the growing

availability of large labeled datasets and neural learning based methods. Moving forward, we

expect the vision and language tasks to move one more step into the real world where intelligent

agents collaborate and communicate with people.

6.2 Future Directions

Though we have achieved substantial success on the above mentioned tasks, there still may

exist some problems that is relevant to the future work. Special attention may be put on general-

ization ability and robustness for vision and language.

Consider referring expression comprehension as an example. While our MAttNet Yu et al.

(2018) has achieved state-of-the-art performance, it suffers the lack of generalization. Note it was

only trained on the expressions for the 80 MS COCO categories Lin et al. (2014), thus cannot

comprehend sentences describing beyond the 80 categories, e.g., “red shoes on the tall boy”, “the

blue sky”, “left hand side tree”, etc. Such issue may be addressed by zero-shot learning tech-

niques, among which a further breaking down of neural modules might be one possible solution.

We hypothesize that the detection module could be popped out via deeper neural language parser,

so that this part could be replaced by pre-trained larger-scale detector. We may also consider the

95

joint segmentation of instances and stuff Kirillov et al. (2018) for referring to everything. Besides,

we should expect our system to judge if the input referring expression makes sense or not. For

example, an input sentence “girl dancing” should be judged as fake expression if there was no

girl in the picture.

Robustness is another issue. What we found in MAttNet or MT-EQA is once we move a

few pixels horizontally or vertically on the image or change the view or illumination in the envi-

ronment, our model may predict quite different result. One possible reason is our training data

cannot cover all kinds of variant views, images and sentences, thus making some discrepancy

between training and testing. Literature work Xu et al. (2018); Hsieh et al. (2018) shows current

attention, localization and compositional internal structure is vulnerable to adversarial attack.

How to generate or mine more informative data and learn from adversarial negatives might be

key to address such issue.

96

REFERENCES

Agrawal, H., Chandrasekaran, A., Batra, D., Parikh, D., and Bansal, M. (2016). Sort story: Sorting
jumbled images and captions into stories. In EMNLP.

Aker, A. and Gaizauskas, R. (2010). Generating image descriptions using dependency relational
patterns. In ACL.

Anand, A., Belilovsky, E., Kastner, K., Larochelle, H., and Courville, A. (2018). Blindfold
baselines for embodied qa. arXiv preprint arXiv:1811.05013.

Anderson, P., He, X., Buehler, C., Teney, D., Johnson, M., Gould, S., and Zhang, L. (2018a).
Bottom-up and top-down attention for image captioning and visual question answering.
CVPR.

Anderson, P., Wu, Q., Teney, D., Bruce, J., Johnson, M., Sünderhauf, N., Reid, I., Gould, S., and
van den Hengel, A. (2018b). Vision-and-language navigation: Interpreting visually-grounded
navigation instructions in real environments. In CVPR.

Andreas, J. and Klein, D. (2016). Reasoning about pragmatics with neural listeners and speakers.
EMNLP.

Andreas, J., Klein, D., and Levine, S. (2017). Modular multitask reinforcement learning with
policy sketches. ICML.

Andreas, J., Rohrbach, M., Darrell, T., and Klein, D. (2016a). Learning to compose neural net-
works for question answering. NAACL.

Andreas, J., Rohrbach, M., Darrell, T., and Klein, D. (2016b). Neural module networks. In CVPR.

Beattie, C., Leibo, J. Z., Teplyashin, D., Ward, T., Wainwright, M., Küttler, H., Lefrancq,
A., Green, S., Valdés, V., Sadik, A., et al. (2016). Deepmind lab. arXiv preprint
arXiv:1612.03801.

Bell, S., Zitnick, C. L., Bala, K., and Girshick, R. B. (2016). Inside-outside net: Detecting objects
in context with skip pooling and recurrent neural networks. CVPR.

Berg, A. C., Berg, T. L., III, H. D., Dodge, J., Goyal, A., Han, X., Mensch, A., Mitchell, M.,
Sood, A., Stratos, K., and Yamaguchi, K. (2012). Understanding and predicting importance
in images. In CVPR.

Bordes, A., Chopra, S., and Weston, J. (2014a). Question answering with subgraph embeddings. In
EMNLP.

Bordes, A., Weston, J., and Usunier, N. (2014b). Open question answering with weakly supervised
embedding models. In Joint European conference on machine learning and knowledge
discovery in databases. Springer.

97

Brodeur, S., Perez, E., Anand, A., Golemo, F., Celotti, L., Strub, F., Rouat, J., Larochelle, H.,
and Courville, A. (2017). Home: A household multimodal environment. arXiv preprint
arXiv:1711.11017.

Brown-Schmidt, S. and Tanenhaus, M. K. (2006). Watching the eyes when talking about size:
An investigation of message formulation and utterance planning. Journal of Memory and
Language.

Chaplot, D. S., Sathyendra, K. M., Pasumarthi, R. K., Rajagopal, D., and Salakhutdinov, R.
(2018). Gated-attention architectures for task-oriented language grounding. In AAAI.

Chen, X. and Lawrence Zitnick, C. (2015). Mind’s eye: A recurrent visual representation for image
caption generation. In CVPR.

Cheng, J. and Lapata, M. (2016). Neural summarization by extracting sentences and words. In
ACL.

Choi, J., Oh, T.-H., and Kweon, I. S. (2017). Textually customized video summaries. arXiv
preprint arXiv:1702.01528.

Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., and Kuksa, P. (2011). Natural
language processing (almost) from scratch. JMLR.

Das, A., Datta, S., Gkioxari, G., Lee, S., Parikh, D., and Batra, D. (2018a). Embodied question
answering. CVPR.

Das, A., Gkioxari, G., Lee, S., Parikh, D., and Batra, D. (2018b). Neural Modular Control for
Embodied Question Answering. CoRL.

Das, A., Gkioxari, G., Lee, S., Parikh, D., and Batra, D. (2018c). Neural modular control for
embodied question answering. arXiv preprint arXiv:1810.11181.

De Marneffe, M.-C., MacCartney, B., Manning, C. D., et al. (2006). Generating typed dependency
parses from phrase structure parses. In Proceedings of LREC.

Dhiraj Gandhi, Lerrel Pinto, A. G. (2017). Learning to fly by crashing. IROS.

Donahue, J., Anne Hendricks, L., Guadarrama, S., Rohrbach, M., Venugopalan, S., Saenko, K.,
and Darrell, T. (2015). Long-term recurrent convolutional networks for visual recognition and
description. In CVPR.

Efron, B. and Tibshirani, R. J. (1994). An introduction to the bootstrap. CRC press.

Erhan, D., Szegedy, C., Toshev, A., and Anguelov, D. (2014). Scalable object detection using deep
neural networks. In CVPR.

Fang, H., Gupta, S., Iandola, F., Srivastava, R. K., Deng, L., Dollár, P., Gao, J., He, X., Mitchell,
M., Platt, J. C., et al. (2015). From captions to visual concepts and back. In CVPR.

98

Farhadi, A., Hejrati, M., Sadeghi, M. A., Young, P., Rashtchian, C., Hockenmaier, J., and Forsyth,
D. (2010). Every picture tells a story: Generating sentences from images. In ECCV.

Feng, Y. and Lapata, M. (2010). Topic models for image annotation and text illustration. In ACL.

FitzGerald, N., Artzi, Y., and Zettlemoyer, L. S. (2013). Learning distributions over logical forms
for referring expression generation. In EMNLP.

Fukui, A., Park, D. H., Yang, D., Rohrbach, A., Darrell, T., and Rohrbach, M. (2016). Multimodal
compact bilinear pooling for visual question answering and visual grounding. In EMNLP.

Gatt, A. and Belz, A. (2009). Introducing shared tasks to nlg: The tuna shared task evaluation
challenges. In EMNLP. Springer.

Geman, D., Geman, S., Hallonquist, N., and Younes, L. (2015). Visual turing test for computer
vision systems. Proceedings of the National Academy of Sciences.

Girshick, R. (2015). Fast r-cnn. In ICCV.

Girshick, R., Donahue, J., Darrell, T., and Malik, J. (2014). Rich feature hierarchies for accurate
object detection and semantic segmentation. In CVPR.

Gong, B., Chao, W.-L., Grauman, K., and Sha, F. (2014a). Diverse sequential subset selection for
supervised video summarization. In NIPS.

Gong, Y., Ke, Q., Isard, M., and Lazebnik, S. (2014b). A multi-view embedding space for model-
ing internet images, tags, and their semantics. IJCV.

Gordon, D., Kembhavi, A., Rastegari, M., Redmon, J., Fox, D., and Farhadi, A. (2018). Iqa: Visual
question answering in interactive environments. In CVPR.

Grubinger, M., Clough, P., Müller, H., and Deselaers, T. (2006). The iapr tc-12 benchmark: A new
evaluation resource for visual information systems. In International workshop ontoImage.

Gupta, S., Davidson, J., Levine, S., Sukthankar, R., and Malik, J. (2017). Cognitive mapping and
planning for visual navigation. In CVPR.

Gygli, M., Grabner, H., and Van Gool, L. (2015). Video summarization by learning submodular
mixtures of objectives. In CVPR.

He, K., Gkioxari, G., Dollár, P., and Girshick, R. (2017). Mask r-cnn. In ICCV.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition. In
CVPR.

Hendricks, L. A., Wang, O., Shechtman, E., Sivic, J., Darrell, T., and Russell, B. C. (2017). Lo-
calizing moments in video with natural language. ICCV.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural Computation.

99

Hsieh, C.-J., Yi, J., Chen, H., Zhang, H., and Chen, P.-Y. (2018). Attacking visual language
grounding with adversarial examples: A case study on neural image captioning. In ACL.

Hu, R., Andreas, J., Rohrbach, M., Darrell, T., and Saenko, K. (2017a). Learning to reason:
End-to-end module networks for visual question answering. ICCV.

Hu, R., Rohrbach, M., and Darrell, T. (2016a). Segmentation from natural language expressions. In
ECCV.

Hu, R., Rohrbacnh, M., Andreas, J., Darrell, T., and Saenko, K. (2017b). Modeling relationship
in referential expressions with compositional modular networks. In CVPR.

Hu, R., Xu, H., Rohrbach, M., Feng, J., Saenko, K., and Darrell, T. (2016b). Natural language
object retrieval. CVPR.

Huang, T.-H. K., Ferraro, F., Mostafazadeh, N., Misra, I., Agrawal, A., Devlin, J., Girshick, R.,
He, X., Kohli, P., Batra, D., et al. (2016). Visual storytelling. In NACCL.

Johnson, J., Hariharan, B., van der Maaten, L., Fei-Fei, L., Zitnick, C. L., and Girshick, R.
(2017a). Clevr: A diagnostic dataset for compositional language and elementary visual
reasoning. In CVPR.

Johnson, J., Hariharan, B., van der Maaten, L., Hoffman, J., Fei-Fei, L., Zitnick, C. L., and Gir-
shick, R. (2017b). Inferring and executing programs for visual reasoning. ICCV.

Johnson, J., Karpathy, A., and Fei-Fei, L. (2016). Densecap: Fully convolutional localization
networks for dense captioning. CVPR.

Karpathy, A. and Fei-Fei, L. (2015). Deep visual-semantic alignments for generating image
descriptions. In CVPR.

Kazemzadeh, S., Ordonez, V., Matten, M., and Berg, T. (2014). Referitgame: Referring to objects
in photographs of natural scenes. In EMNLP.

Kempka, M., Wydmuch, M., Runc, G., Toczek, J., and Jaśkowski, W. (2016). Vizdoom: A doom-
based ai research platform for visual reinforcement learning. In Computational Intelligence
and Games (CIG), 2016 IEEE Conference on.

Khosla, A., Hamid, R., Lin, C.-J., and Sundaresan, N. (2013). Large-scale video summarization
using web-image priors. In CVPR.

Kim, G., Moon, S., and Sigal, L. (2015). Joint photo stream and blog post summarization and
exploration. In CVPR.

Kim, G. and Xing, E. P. (2014). Reconstructing storyline graphs for image recommendation from
web community photos. In CVPR.

Kirillov, A., He, K., Girshick, R. B., Rother, C., and Dollár, P. (2018). Panoptic segmentation.
CVPR.

100

Kiros, R., Salakhutdinov, R., and Zemel, R. S. (2014). Unifying visual-semantic embeddings with
multimodal neural language models. arXiv preprint arXiv:1411.2539.

Kolve, E., Mottaghi, R., Gordon, D., Zhu, Y., Gupta, A., and Farhadi, A. (2017). Ai2-thor: An
interactive 3d environment for visual ai. arXiv preprint arXiv:1712.05474.

Krishna, R., Hata, K., Ren, F., Fei-Fei, L., and Niebles, J. C. (2017). Dense-captioning events in
videos. ICCV.

Krishnamoorthy, N., Malkarnenkar, G., Mooney, R., Saenko, K., and Guadarrama, S. (2013).
Generating natural-language video descriptions using text-mined knowledge. In AAAI.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with deep convo-
lutional neural networks. In NIPS.

Kulesza, A., Taskar, B., et al. (2012). Determinantal point processes for machine learning. Founda-
tions and Trends® in Machine Learning.

Kulkarni, G., Premraj, V., Dhar, S., Li, S., Choi, Y., Berg, A. C., and Berg, T. L. (2011). Baby talk:
Understanding and generating image descriptions. In CVPR.

Kulkarni, G., Premraj, V., Ordonez, V., Dhar, S., Li, S., Choi, Y., Berg, A. C., and Berg, T. (2013).
Babytalk: Understanding and generating simple image descriptions. Pattern Analysis and
Machine Intelligence, IEEE Transactions on.

Kuznetsova, P., Ordonez, V., Berg, A. C., Berg, T. L., and Choi, Y. (2012). Collective generation
of natural image descriptions. In ACL.

Lebret, R., Pinheiro, P. O., and Collobert, R. (2015). Phrase-Based Image Captioning. In ICML.

Lei, J., Yu, L., Bansal, M., and Berg, T. L. (2018). Tvqa: Localized, compositional video question
answering. In EMNLP.

Levine, S., Finn, C., Darrell, T., and Abbeel, P. (2016). End-to-end training of deep visuomotor
policies. JMLR.

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., and Zitnick,
C. L. (2014). Microsoft coco: Common objects in context. In European conference on
computer vision.

Lin, X. and Parikh, D. (2015). Don’t just listen, use your imagination: Leveraging visual common
sense for non-visual tasks. arXiv preprint arXiv:1502.06108.

Liu, B., Yeung, S., Chou, E., Huang, D.-A., Fei-Fei, L., and Niebles, J. C. (2018). Temporal
modular networks for retrieving complex compositional activities in videos. In ECCV.

Liu, C., Lin, Z., Shen, X., Yang, J., Lu, X., and Yuille, A. (2017a). Recurrent multimodal interac-
tion for referring image segmentation. In ICCV.

101

Liu, J., Wang, L., and Yang, M.-H. (2017b). Referring expression generation and comprehension
via attributes. In ICCV.

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S. E., Fu, C.-Y., and Berg, A. C. (2016). Ssd:
Single shot multibox detector. In ECCV.

Long, J., Shelhamer, E., and Darrell, T. (2015). Fully convolutional networks for semantic segmen-
tation. In CVPR.

Lu, Z. and Grauman, K. (2013). Story-driven summarization for egocentric video. In CVPR.

Luo, R. and Shakhnarovich, G. (2017). Comprehension-guided referring expressions. CVPR.

Malinowski, M. and Fritz, M. (2014). A multi-world approach to question answering about
real-world scenes based on uncertain input. In NIPS.

Mao, J., Huang, J., Toshev, A., Camburu, O., Yuille, A. L., and Murphy, K. (2016). Generation
and comprehension of unambiguous object descriptions. In CVPR.

Mao, J., Xu, W., Yang, Y., Wang, J., Huang, Z., and Yuille, A. (2015). Deep captioning with
multimodal recurrent neural networks (m-rnn). ICLR.

Mason, R. (2013). Domain-independent captioning of domain-specific images. In HLT-NAACL.

Mei, H., Bansal, M., and Walter, M. R. (2016). What to talk about and how? selective generation
using lstms with coarse-to-fine alignment. In NAACL.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). Efficient estimation of word representa-
tions in vector space. arXiv preprint arXiv:1301.3781.

Mitchell, M., Han, X., Dodge, J., Mensch, A., Goyal, A., Berg, A., Yamaguchi, K., Berg, T.,
Stratos, K., and Daumé III, H. (2012). Midge: Generating image descriptions from computer
vision detections. In EACL.

Mitchell, M., Reiter, E., and van Deemter, K. (2013a). Typicality and object reference. In Cognitive
Science (CogSci).

Mitchell, M., van Deemter, K., and Reiter, E. (2010). Natural reference to objects in a visual
domain. In International Natural Language Generation Conference (INLG).

Mitchell, M., Van Deemter, K., and Reiter, E. (2013b). Generating expressions that refer to visible
objects. In HLT-NAACL.

Nagaraja, V. K., Morariu, V. I., and Davis, L. S. (2016). Modeling context between objects for
referring expression understanding. In ECCV.

Ordonez, V., Kulkarni, G., and Berg, T. L. (2011). Im2text: Describing images using 1 million
captioned photographs. In NIPS.

Pan, Y., Mei, T., Yao, T., Li, H., and Rui, Y. (2016). Jointly modeling embedding and translation
to bridge video and language. In CVPR.

102

Park, C. C. and Kim, G. (2015). Expressing an image stream with a sequence of natural sentences.
In NIPS.

Pennington, J., Socher, R., and Manning, C. (2014). Glove: Global vectors for word representation.
In EMNLP.

Rashtchian, C., Young, P., Hodosh, M., and Hockenmaier, J. (2010). Collecting image annota-
tions using amazon’s mechanical turk. In Proceedings of the NAACL HLT 2010 Workshop
on Creating Speech and Language Data with Amazon’s Mechanical Turk. Association for
Computational Linguistics.

Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster r-cnn: Towards real-time object detection
with region proposal networks. In NIPS.

Rohrbach, A., Rohrbach, M., Hu, R., Darrell, T., and Schiele, B. (2016a). Grounding of textual
phrases in images by reconstruction. ECCV.

Rohrbach, A., Torabi, A., Rohrbach, M., Tandon, N., Pal, C., Larochelle, H., Courville, A., and
Schiele, B. (2016b). Movie description. IJCV.

Rush, A. M., Chopra, S., and Weston, J. (2015). A neural attention model for abstractive sentence
summarization. In EMNLP.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A.,
Khosla, A., Bernstein, M., Berg, A. C., and Fei-Fei, L. (2015). ImageNet Large Scale Visual
Recognition Challenge. IJCV.

Sadeghi, F. and Levine, S. (2017). CAD2RL: Real single-image flight without a single real image.
RSS.

Sadeghi, F., Zitnick, C. L., and Farhadi, A. (2015). Visalogy: Answering visual analogy questions.
In NIPS.

Savva, M., Chang, A. X., Dosovitskiy, A., Funkhouser, T., and Koltun, V. (2017). MINOS:
Multimodal indoor simulator for navigation in complex environments. arXiv:1712.03931.

Sigurdsson, G. A., Chen, X., and Gupta, A. (2016). Learning visual storylines with skipping
recurrent neural networks. In ECCV.

Simonyan, K. and Zisserman, A. (2014). Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556.

Socher, R., Bauer, J., Manning, C. D., et al. (2013). Parsing with compositional vector grammars.
In ACL.

Song, S., Yu, F., Zeng, A., Chang, A. X., Savva, M., and Funkhouser, T. (2017). Semantic scene
completion from a single depth image. In CVPR.

Su, J.-C., Wu, C., Jiang, H., and Maji, S. (2017). Reasoning about fine-grained attribute phrases
using reference games. ICCV.

103

Sukhbaatar, S., Szlam, A., Weston, J., and Fergus, R. (2015). Weakly supervised memory networks.
In NIPS.

Synnaeve, G., Nardelli, N., Auvolat, A., Chintala, S., Lacroix, T., Lin, Z., Richoux, F., and
Usunier, N. (2016). Torchcraft: a library for machine learning research on real-time strategy
games. arXiv preprint arXiv:1611.00625.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., and
Rabinovich, A. (2015). Going deeper with convolutions. In CVPR.

van Deemter, K., van der Sluis, I., and Gatt, A. (2006). Building a semantically transparent corpus
for the generation of referring expressions. In International Conference on Natural Language
Generation (INLG).

Venugopalan, S., Rohrbach, M., Donahue, J., Mooney, R., Darrell, T., and Saenko, K. (2015).
Sequence to sequence-video to text. In ICCV.

Venugopalan, S., Xu, H., Donahue, J., Rohrbach, M., Mooney, R., and Saenko, K. (2014). Trans-
lating videos to natural language using deep recurrent neural networks. arXiv preprint
arXiv:1412.4729.

Viethen, J. and Dale, R. (2008a). The use of spatial relations in referring expression generation. In
International Natural Language Generation Conference (INLG).

Viethen, J. and Dale, R. (2008b). The use of spatial relations in referring expression generation. In
Proceedings of the Fifth International Natural Language Generation Conference.

Vinyals, O., Fortunato, M., and Jaitly, N. (2015a). Pointer networks. In NIPS.

Vinyals, O., Toshev, A., Bengio, S., and Erhan, D. (2015b). Show and tell: A neural image caption
generator. In CVPR.

Wang, L., Li, Y., and Lazebnik, S. (2016). Learning deep structure-preserving image-text embed-
dings. CVPR.

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine learning, 8(3-4):229–256.

Woodsend, K. and Lapata, M. (2010). Automatic generation of story highlights. In ACL.

Wu, Q., Shen, C., Wang, P., Dick, A., and van den Hengel, A. (2017). Image captioning and visual
question answering based on attributes and external knowledge. IEEE Transactions on Pattern
Analysis and Machine Intelligence.

Wu, Y., Wu, Y., Gkioxari, G., and Tian, Y. (2018). Building generalizable agents with a realistic
and rich 3d environment. ICLR workshop.

Xia, F., Zamir, A. R., He, Z., Sax, A., Malik, J., and Savarese, S. (2018). Gibson env: Real-world
perception for embodied agents. In CVPR.

104

Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A. C., Salakhutdinov, R., Zemel, R. S., and Bengio,
Y. (2015). Show, attend and tell: Neural image caption generation with visual attention. In
ICML.

Xu, X., Chen, X., Liu, C., Rohrbach, A., Darrell, T., and Song, D. X. (2018). Fooling vision and
language models despite localization and attention mechanism. CVPR.

Yang, Y., Teo, C. L., Daumé III, H., and Aloimonos, Y. (2011). Corpus-guided sentence generation
of natural images. In EMNLP.

Yang, Z., Yang, D., Dyer, C., He, X., Smola, A. J., and Hovy, E. H. (2016). Hierarchical attention
networks for document classification. In HLT-NAACL.

Yao, L., Torabi, A., Cho, K., Ballas, N., Pal, C., Larochelle, H., and Courville, A. (2015). Describ-
ing videos by exploiting temporal structure. In ICCV.

Yao, T., Pan, Y., Li, Y., Qiu, Z., and Mei, T. (2016). Boosting image captioning with attributes.
arXiv preprint arXiv:1611.01646.

You, Q., Jin, H., Wang, Z., Fang, C., and Luo, J. (2016). Image captioning with semantic attention.
In CVPR.

Young, P., Lai, A., Hodosh, M., and Hockenmaier, J. (2014). From image descriptions to visual
denotations: New similarity metrics for semantic inference over event descriptions. TACL.

Yu, H., Wang, J., Huang, Z., Yang, Y., and Xu, W. (2016a). Video paragraph captioning using
hierarchical recurrent neural networks. In CVPR.

Yu, L., Bansal, M., and Berg, T. L. (2017a). Hierarchically-attentive rnn for album summarization
and storytelling. In EMNLP.

Yu, L., Chen, X., Gkioxari, G., Bansal, M., Berg, T. L., and Batra, D. (2019). Multi-target embod-
ied question answering. In CVPR.

Yu, L., Lin, Z., Shen, X., Yang, J., Lu, X., Bansal, M., and Berg, T. L. (2018). Mattnet: Modular
attention network for referring expression comprehension. In CVPR.

Yu, L., Park, E., Berg, A. C., and Berg, T. L. (2015). Visual madlibs: Fill in the blank image
generation and question answering. In ICCV.

Yu, L., Poirson, P., Yang, S., Berg, A. C., and Berg, T. L. (2016b). Modeling context in referring
expressions. In ECCV.

Yu, L., Tan, H., Bansal, M., and Berg, T. L. (2017b). A joint speaker-listener-reinforcer model for
referring expressions. In CVPR.

Zhang, K., Chao, W.-L., Sha, F., and Grauman, K. (2016a). Summary transfer: Exemplar-based
subset selection for video summarization. In CVPR.

105

Zhang, K., Chao, W.-L., Sha, F., and Grauman, K. (2016b). Video summarization with long
short-term memory. In ECCV.

Zhu, Y., Gordon, D., Kolve, E., Fox, D., Fei-Fei, L., Gupta, A., Mottaghi, R., and Farhadi, A.
(2017a). Visual semantic planning using deep successor representations. In ICCV.

Zhu, Y., Mottaghi, R., Kolve, E., Lim, J. J., Gupta, A., Fei-Fei, L., and Farhadi, A. (2017b). Target-
driven visual navigation in indoor scenes using deep reinforcement learning. In ICRA.

106

	TITLE
	ABSTRACT
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Visual Madlibs
	Introduction
	Related Work
	Designing Visual Madlibs
	Data Collection

	Tasks: Multiple-choice question answering and targeted generation
	Analyzing the Visual Madlibs Dataset
	Quantifying Visual Madlibs responses
	Visual Madlibs vs general descriptions

	Experiments
	Discussion of results

	Referring Expression Generation and Comprehension
	Two Tasks
	Referring Expression Datasets
	Modeling Context in Referring Expressions
	Baselines
	Visual Comparison
	Joint Language Generation
	Experiments
	Analysis Experiments
	Referring Expression Comprehension
	Referring Expression Generation

	A Joint Speaker-Listener-Reinforcer Model for Referring Expressions
	Model
	Speaker
	Listener
	Reinforcer
	Joint Model
	Comprehension and Generation

	Experiments
	Comprehension Task
	Generation Task

	Modular Attention Network for Referring Expression Comprehension
	Model
	Language Attention Network
	Visual Modules
	Loss Function

	Experiments
	Results: Referring Expression Comprehension
	Segmentation from Referring Expression

	Album Summarization and Storytelling
	Introduction
	Related Work
	Model
	Album Encoder
	Photo Selector
	Story Generator

	Experiments
	Story Generation
	Album Summarization
	Output Example Analysis
	Album Retrieval

	Multi-Target Embodied Question Answering
	Introduction
	Related Work
	Multi-Target EQA Dataset
	Multi-Target EQA Generation

	Model
	Program Generator
	Navigator
	Controller
	VQA Module
	Training

	Experiments
	Evaluation Setup and Metrics
	EQA Results
	Oracle Comparisons

	Discussion and Future Work
	Summary of Contributions
	Future Directions

	REFERENCES

