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Figure 4: E�ect of (K, M) from a �xed-architecture (3, 3) pre-
trained model and modality-randomized pre-trained model.
(K, M) stands for (#text layers, #multimodal layers).
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Figure 5: E�ect of total number of layers from a modality-
randomized model evaluated on CC and MPC after �ne-
tuning. (K, M) stands for (#text layers, #multimodal layers).
K=0 means early-fusion model without text encoder.

we can �exibly adjust our model architecture to satisfy di�erent
e�ciency constraints in practice.

Our modality randomization can be further explored by incor-
porating it into the proposed pre-training in 1 stage. We leave this
promising idea to future work.

4.7 Visualization
We visualize the embeddings from the image encoder, text encoder,
and multimodal fusion encoder respectively in Fig. 6. Speci�cally,
we feed 1K multimodal catalog posts from 10 most popular cat-
egories into CommerceMM. T-SNE is applied for the visualiza-
tion and the colors are corresponding to the annotated categories.
We compare the results of without pre-training (initialized from
ResNet+XLM-R), image-text pre-training with MLM, MIM-kl, and
MIM-fr, and full 14-task pre-training. We observe that with ad-
ditional retrieval tasks in pre-training, e.g., ITC and Omni, the
embeddings of the same class are better clustered with closer dis-
tance. This indicates our proposed pre-training tasks helps learning
a more discriminative representation for each modality.

We also visualize the text-to-image attention in Fig. 7. Comparing
the the models pre-trained with 5 image-text tasks and all tasks
(with Omni-Retrieval pre-training), we observe the cross-modal
attention from all pre-training can better attend to the right regions
referred by the key words, e.g., “dress" and “earrings".

4.8 Deployment and Product Impacts
An early version of CommerceMM model has been deployed at
Facebook, i.e., L2 in Table 2. We pre-trained the GrokNet [4]-based
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Figure 6: T-SNE of di�erent pre-trained models’ embed-
dings.
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Figure 7: Visualization of text-to-image attention from dif-
ferent pre-trained models.

6-layer model using a subset of the tasks (MLM,MIM-kl, MIM-fr and
ITM) and then �ne-tuned on three downstream tasks.We con�rmed
the bene�ts of this framework by running A/B test experiments on
Catalog Categorization (CC), Marketplace Categorization (MPC)
and Catalog Attributes applications.
Catalog Category Filters Users on Shops have access to category
�lters which lets them search products for a speci�c category within
a shop. With our newly launched model, we have increased the
number of shops with category �lter by over 4 times.
Catalog Attributes Filters Attributes are �ne-grained character-
istic of objects, such as color, pattern, material, etc. We ran A/B
tests to con�rm the improvement of attributes prediction on IG and
FB Shops for three speci�c product attributes - color, gender and
material. This model enabled a launch of these three attribute �lters
on 52.7% of all Shops on the platform due to signi�cant precision
and coverage improvements compared to the baseline production
models.

Effect of (K, M) from a fixed-architecture (3, 3) pre-trained model and 
modality-randomized pre-trained model. (K, M) stands for (#text layers, 
#multimodal layers). 
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we can �exibly adjust our model architecture to satisfy di�erent
e�ciency constraints in practice.

Our modality randomization can be further explored by incor-
porating it into the proposed pre-training in 1 stage. We leave this
promising idea to future work.

4.7 Visualization
We visualize the embeddings from the image encoder, text encoder,
and multimodal fusion encoder respectively in Fig. 6. Speci�cally,
we feed 1K multimodal catalog posts from 10 most popular cat-
egories into CommerceMM. T-SNE is applied for the visualiza-
tion and the colors are corresponding to the annotated categories.
We compare the results of without pre-training (initialized from
ResNet+XLM-R), image-text pre-training with MLM, MIM-kl, and
MIM-fr, and full 14-task pre-training. We observe that with ad-
ditional retrieval tasks in pre-training, e.g., ITC and Omni, the
embeddings of the same class are better clustered with closer dis-
tance. This indicates our proposed pre-training tasks helps learning
a more discriminative representation for each modality.

We also visualize the text-to-image attention in Fig. 7. Comparing
the the models pre-trained with 5 image-text tasks and all tasks
(with Omni-Retrieval pre-training), we observe the cross-modal
attention from all pre-training can better attend to the right regions
referred by the key words, e.g., “dress" and “earrings".

4.8 Deployment and Product Impacts
An early version of CommerceMM model has been deployed at
Facebook, i.e., L2 in Table 2. We pre-trained the GrokNet [4]-based
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6-layer model using a subset of the tasks (MLM,MIM-kl, MIM-fr and
ITM) and then �ne-tuned on three downstream tasks.We con�rmed
the bene�ts of this framework by running A/B test experiments on
Catalog Categorization (CC), Marketplace Categorization (MPC)
and Catalog Attributes applications.
Catalog Category Filters Users on Shops have access to category
�lters which lets them search products for a speci�c category within
a shop. With our newly launched model, we have increased the
number of shops with category �lter by over 4 times.
Catalog Attributes Filters Attributes are �ne-grained character-
istic of objects, such as color, pattern, material, etc. We ran A/B
tests to con�rm the improvement of attributes prediction on IG and
FB Shops for three speci�c product attributes - color, gender and
material. This model enabled a launch of these three attribute �lters
on 52.7% of all Shops on the platform due to signi�cant precision
and coverage improvements compared to the baseline production
models.

T-SNE of different pre-trained models’ embeddings.

Effect of total number of layers from a modality 
randomized model evaluated on CC and MPC 
after fine- tuning. (K, M) stands for (#text layers, 
#multimodal layers). K=0 means early-fusion 
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Pre-training Tasks Meta Avg. CC MPC T2I I2T Q2P I2P I2Pi
1 None 50.39 72.08 63.75 22.70 23.88 48.43 55.80 66.10
2 MLM 52.77 73.10 67.94 24.87 25.84 51.59 60.46 65.59
3 MIM-kl 53.59 73.26 69.04 26.31 26.91 53.89 59.18 66.54
4 MIM-kl + MIM-fr 54.18 73.27 69.12 27.88 28.61 54.05 59.48 66.83
5 MLM + MIM-kl + MIM-fr 54.19 73.64 69.55 26.66 26.98 53.47 61.66 67.30
6 MLM + MIM-kl + MIM-fr + ITM 54.62 73.64 69.45 27.82 28.33 54.63 61.63 66.87
7 MLM + MIM-kl + MIM-fr + ITM + ITC 57.87 73.76 69.61 39.11 40.30 55.60 60.03 66.65
8 Omni Retrieval (Omni) 56.27 72.98 67.81 29.69 30.78 57.34 67.98 67.31
9 MLM + MIM-kl + MIM-fr + ITM + ITC + Omni 60.64 73.77 69.73 42.05 43.06 58.48 69.20 68.16

Table 1: Ablation Study of di�erent pre-training tasks using the �ne-tuned performance of Catalog Categorization (CC),
Marketplace Categorization (MPC), Text-to-Image Retrieval (T2I), Image-to-Text Retrieval (I2T), Query-to-Product Retrieval
(Q2P), Image-to-Product Retrieval (I2P), and Image-to-Product-Image Retrieval (I2Pi). All results are obtained from ResNet50-
based CommerceMM (6-layer). For all retrieval tasks, R@1 scores are reported. Meta Avg is the average score of 7 downstream
tasks, measuring the overall performance. Dark and light grey colors highlight the top and second best results for each task.

post. Contrastive learning loss is applied during �ne-tuning. We
use Recall@1 as the evaluation metric.
Image-Product Retrieval We collected 1M post image queries
with the tagged products. Each pair consists of a source image and a
target product page. We split out a 10K subset for evaluation and set
up two tasks for this dataset. The �rst is the image-to-multimodal
retrieval as the given data format, which is called image-to-product
retrieval (I2P). The model for I2P is shown in Fig. 3(b), where we
use the image encoder to encode the input query image and the
whole model to encode the multimodal product post. The second
is the image-to-image retrieval task, where we only use the target
image as the candidates. We call this task as image-to-product-
image retrieval (I2Pi). For both tasks, we apply contrastive learning
loss and use Recall@1 for evaluation.

4.3 Ablation Study on Pre-training
Weanalyze the e�ectiveness of di�erent pre-training settings through
ablation studies over the 7 downstream tasks. In addition to the
above mentioned standard metrics, we also compute the Meta Aver-
age score (average of the results across all tasks) as a global metric.
The complete ablation study is listed in Table. 1. In these experi-
ments, we use a ResNet50-based 6-layer CommerceMM, i.e., the
number of layers of text encoder and multimodal fusion together
equals 6, initialized from XLM-R-small [6]. All models are trained
in an end-to-end manner.

First, we provide a baseline without any multimodal pre-training
involved in Line 1 (L1). In other words, this model is directly ini-
tialized from the o�-the-shelf ResNet and XLM-R directly, which
were pre-trained in vision-only and language-only domain.

Second, we validate the e�ectiveness of each pre-training task
through a thorough ablation. Comparing L2 and L3, our proposed
MIM-kl (L3) achieves a clear gain over MLM (L2). When applying
both MIM-kl and MIM-fr, L4 further improves the performance.
This is a quite di�erent observation compared with [10, 16], where
previously MIM was not shown to be helpful. The di�erence indi-
cates the e�ectiveness of our proposed MIM tasks. Interestingly,

the combined MLM, MIM-kl, and MIM-fr in L5 does not quite out-
perform L4 (with only 0.01 gain on the Meta Average). One possible
reason might be the two MIM tasks overshadows the e�ect of MLM.
L6 and L7 adds ITM and ITC into the pre-training, both of which
further improves the meta average. Notably, ITC introduces a sig-
ni�cant improvement on image-text retrieval tasks, i.e., T2I and I2T
due to the same task has been well warmed up during pre-training.

Next, we validate the contribution of Omni-Retrieval (Omni)
pre-training tasks. In L8, we only apply the 9 Omni-Retrieval tasks
during pre-training without any help from image-text pre-training.
We observe a signi�cant gain on Q2P, I2P, and I2Pi, which bene�ts
from the text-to-multimodal, image-to-multimodal, and image-to-
image tasks in the Omni. Additionally, Omni also helps on the �rst
4 image-text tasks (CC, MPC, T2I, I2T), comparing L1 and L8. When
combining both image-text and Omni-Retrieval pre-training, our
model in L9 achieves the best across every single task.

Last but not least, we compare the performance between I2P and
I2Pi. The two tasks share the same evaluation set, where each image
in I2Pi is from its corresponding product page in I2P. Interestingly,
we found that without Omni Retrieval, I2Pi always performs better
than I2P in L1-L7. As comparison, L8 and L9 shows I2P’s results are
better than I2Pi with Omni, which aligns with our intuition that
the multimodal product page contains more cues than its product
image only. This indicates Omni helps learning more generalized
representations under di�erent alignment space.

4.4 E�ectiveness of Vision Encoder, Text
Encoder, and Model Size

In Table 2, we �rst show the results using the o�-the-shelf GrokNet [4]
Hash feature as the image embedding. We feed the text tokens
and image embedding directly into the multimodal transformer
as [5, 21], i.e., the multimodal model is an early-fusion model with-
out text encoder. We apply MLM, MIM-kl, MIM-fr and ITM for
the multimodal pre-training, each of which is same as in Sec. 3.26.
The mere di�erence lies in the masking strategy of MIM, where we

6We cannot apply image-text contrastive learning or omni retrieval as there is no text
encoder in the early-fusion architecture.

Ablation Study of different pre-training tasks on different downstream tasks, including Catalog Categorization (CC), Marketplace Categorization 
(MPC), Text-to-Image Retrieval (T2I), Image-to-Text Retrieval (I2T), Query-to-Product Retrieval (Q2P), Image-to-Product Retrieval (I2P), and 
Image-to-Product-Image Retrieval (I2Pi). Meta Average is the average score of 7 tasks.

Image-Text Retrieval on the academic dataset – FashionGen.
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Vis. Enc. (K, M) Pre-training Tasks Meta Avg. CC MPC T2I I2T Q2P I2P I2Pi
1 GrokNet Hash (0, 6) None - 71.26 65.26 - - - - -
2 GrokNet Hash (0, 6) MLM + MIM-kl + MIM-fr + ITM - 73.40 69.04 - - - - -
3 ResNet50 (0, 6) MLM + MIM-kl + MIM-fr + ITM - 73.54 69.13 - - - - -
4 ResNet50 (3, 3) MLM + MIM-kl + MIM-fr + ITM 54.62 73.64 69.45 27.82 28.33 54.63 61.63 66.87
5 ResNet50 (3, 3) MLM + MIM-kl + MIM-fr + ITM + ITC + Omni 60.64 73.77 69.73 42.05 43.06 58.48 69.20 68.16
6 ViT-B/16 (3, 3) MLM + MIM-kl + MIM-fr + ITM + ITC + Omni 62.69 73.78 69.80 43.84 44.29 61.43 73.41 72.31
7 ViT-B/16 (6, 6) MLM + MIM-kl + MIM-fr + ITM + ITC + Omni 66.85 74.31 70.60 52.10 53.72 65.70 77.16 74.36

Table 2: E�ect of vision encoder, text encoder, and model size. (K, M) stands for (#text layers, #multimodal layers) inside
CommerceMM, both of which are transformers. Dark and light grey colors highlight the top and second best results.

randomly shu�e the 0/1 bits of the input Hash for masking. For
�ne-tuning, we focused on the multimodal categorization tasks of
CC and MPC. We observe that even with only 4 pre-training tasks,
there is a signi�cant improvement on CC and MPC tasks from L1
over L2, indicating that our pre-training also works well with a
�xed vision encoder of GrokNet. We launched L2 as our current
production model. More details of the deployment and product
impact are provided in Sec. 4.8. We then show the advantage of
end-to-end training. Comparing L2 and L3, we observe the end-to-
end trained model with ResNet50 already outperforms GrokNet’s
Hash [4], which is from a ResNeXt101 model.

Next, we compare with and without text encoder. Both L3 and
L4 have the same number of transformer layers, i.e., the model size
is the same, and are pre-trained with the same tasks. We observe
that with a 3-layer text encoder, the model in L4 achieves better
performance than the early-fusion model in L3 on CC and MPC.
Moreover, the introduction of a text encoder allows us to perform
those text-based retrieval tasks, e.g., T2I, I2T, and Q2P. Adding the
Omni-Retrieval pre-training tasks, the model in L5 further improves
the performance of all the retrieval tasks, compared with L4.

We then compare the e�ectiveness of vision encoder. With the
same input image size 224x224 and the same transformer archi-
tecture, we found ViT-B/16 [9] (L6) brings a consistent gain over
ResNet50 (L5) on each of the 7 downstream tasks, showing a better
visual encoder is bene�cial to the multimodal applications.

We also experiment scaling up our transformer from 6 layers
(L6) to 12 layers (L7). Note for the 12-layer transformer, we simply
assign its �rst 6 layers from XLM-R to the text encoder and leave
the rest 6 layers to the multimodal fusion encoder. Comparing L6
and L7, we observe a further improvement on each task with the
larger model. We leave the exploration of even larger transformer
with more advanced vision encoder to the future work.

4.5 Transferability to Academic Dataset
We also evaluate how our pre-trained model performs on the aca-
demic dataset, e.g., FashionGen [31]. We strictly follow [51] con-
structing its image-text retrieval task. In its text-to-image retrieval,
the model is required to pick the matched image from 101 images
given a text. In the 101 images, one is positively paired with the
text and the other 100 are randomly paired but sharing the same
sub-category as the positive, increasing the di�culty. The same
setting is for its image-to-text retrieval. We �ne-tune our smallest
ResNet50-based 6-layer CommerceMM (L9 in Table 1) on the dataset
with contrastive learning. In Table. 3, we compare our model with

FashionGen T2I FashionGen I2T
R1 R5 R10 R1 R5 R10

FashionBERT [11] 26.8 46.5 55.7 24.0 46.3 52.1
KaleidoBERT [51] 33.9 60.6 68.6 28.0 60.1 68.4
CommerceMM (small) 39.6 61.5 72.7 41.6 64.0 72.8
Table 3: Image-Text Retrieval on FashionGen [31].

the state-of-art commerce-domain pre-trained models [11, 51]. We
found even our smallest model already outperforms [11, 51] with a
clear margin, indicating CommerceMM’s superior transferability.

4.6 Modality Randomization
As in Sec. 3.1, our model design allows us to dynamically change
the text encoder and multimodal fusion encoder by assigning dif-
ferent  and" layers to each. Previous works [1, 38, 39, 44] show
the modal-agnostic training can be bene�cial to the multimodal
understanding. Our approach follows the same spirit. At each train-
ing step, we randomly assign  and " transformer layers (while
keeping the sum of  and" unchanged) to the text encoder and
multimodal encoder, so that every layer can share the knowledge
from both text and multimodal modalities.

To validate this interesting idea, we set up a light-weighted 2nd-
stage pre-training for the modality randomization with 5 image-text
pre-training tasks. We then �ne-tune our model on CC and MPC,
both measuring the multimodal recognition capability. Fig. 4 com-
pares the �xed-architecture and modality-randomized pre-trained
models. Typically the pre-training and �ne-tuning models should
share the same architecture, but we propose to change the model
architecture at �ne-tuning stage for potential better performance.
We observe the modality-randomized pre-training brings better
performance than �xed-arch under any architecture setting at �ne-
tuning. We also found a smaller accuracy variance of the modality-
randomized model under di�erent architectures, showing its ro-
bustness to the model change.

We also experiment with changing the total number of layers.
In Figure 5, we plot the CC and MPC accuracy with  = 0 text
encoder and di�erent" fusion layers (each is an early fusion model
without text encoder). While it seems no surprise the deeper model
brings better accuracy, we found our small models also perform
well without notable performance drop compared with using full
layers. Note our 2-layer model achieves 73.10 on CC and 67.88
on MPC, which are already better than the 6-layer model without
pre-training in L1 of Table 1. Thus with modality randomization,
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found the naive masked patch regression is not helpful in multi-
modal pre-training. In this work, we disregard the reconstruction
of each masked region, but instead recover the holistic image signal
at vcls token. We �rst follow [12, 42] to use a larger masking ratio
of 50% (instead of 15% as in [5, 25, 36]). The masked patches are
replaced with grey pixels. Our supervision is provided by another
view of the original intact input image. While MaskFeat [41] used
Histograms of Oriented Gradients (HOG) as the supervision for
visual pre-training, we rely on the more discriminative signals from
ClusterFit [43] and GrokNet [4] to extract additional two views of
the raw image. Between the two, [43] provides the clustering prob-
ability 2 (v) while [4] extracts the pool5 embedding A (v) (feature
output from the 5-th Conv Block). Correspondingly, we propose
two MIM tasks but sharing the same objective base:

LMIM (\ ) = E(w,v)⇠⇡3\ (vm |v\m,w),
where 3\ is de�ned as follows.

(1)Masked Image Modeling Feature Regression (MIM-fr)
MIM-fr learns to regress the multimodal transformer’s output at
v8 cls to the pool5 embedding from GrokNet, i.e., A (v). Speci�cally,
we apply an FC layer to convert its hidden output into a vector
q\ (v8 cls) of the same dimension as GrokNet’s pool5. Then we
apply L2 regression on the mean square error between the two:
3\ (vcls) |v\m,w) = kq\ (vcls) � A (v)k22.

(2) Masked Image Modeling KL-Divergence (MIM-kl) MIM-
kl applies the soft label of ClusterFit probability[43] as the supervi-
sion signal, which is the softmax from ClusterFit output formatting
the distribution of clusters 2̃ (v). We project the multimodal trans-
former’s output at v8 cls to the same distribution space k\ (v8 cls)
with softmax. We aim to distill the intact knowledge from Cluster-
FIT into CommerceMM, by minimizing the KL divergence between
the two distributions: 3\ (vcls |v\m,w) = k⇡ ! (2̃ (v) | |k\ (vcls)k.
Image-Text Contrastive Learning (ITC) Following [19], we add
an image-text contrastive loss between the visual and textual em-
beddings right before feeding them into the multimodal fusion
module. It aims to align the two modalities into the same space
before fusion. Speci�cally, we project the textual embedding w8 cls

and visual embedding at v8 cls to a normalized lower-dimensional
representations via two linear transformations 5 and 6. The simi-
larity of the text w8 and the image v9 is then measured by the dot
product of

B (w8 , v9 ) = 5\ (w8 cls))6\ (v8 cls)
We apply contrastive learning to bring the matched image-text
pairs in the embedding space closer than the unmatched ones as
follows:

L8C2 = �
’
8

[log exp(B (w8 , v8 )/g)Õ
9 exp(B (w8 , v9 )/g)

+ log
exp(B (w8 , v8 )/g)Õ
9 exp(B (w9 , v8 )/g)

],

where g is a learned temperature parameter.
Image-Text Matching (ITM) In ITM, the inputs are a paired
sentence and image and the output is a binary label ~ 2 {0, 1},
indicating if each input pair is a match. We extract the hidden
output of wcls at the last layer of multimodal fusion to represent
the fused representation of both modalities, then feed it into an
FC layer followed by a sigmoid function to predict a single score
between 0 and 1. We denote the output score as >\ (w, v). During

pre-training, we sample a positive or negative pair (w, v) from the
dataset ⇡ at each step. The negative pair is created by replacing
the image or text in a paired sample with a randomly-selected one
from other samples. Following [19], when ITC is applied, we could
sample the hard negative pairs from ITC’s computed similarity
matrix B (w8 , v9 ). The incorporation of those hard negatives makes
ITM a harder task, which is more bene�cial for the pre-training [27].
We apply binary cross entropy for this loss:

LITM (\ ) = �E(w,v)⇠⇡ [~ log>\ (w, v) + (1�~) log(1�>\ (w, v))]) .

3.3 Cross-Pair Pre-training: Omni Retrieval
As in Fig. 1, besides image-text pairs, there are also a huge amount
of cross-modal and cross-pair commerce data. We formulate such
data as two pairs, where we denote the source pair as (w8 , v8 ) and
the target pair as (w9 , v9 ). Note one ofw and v (in the source/target
pair) could be missing in some case. For example, the source for
search query is only one single sentence, and the source for visual
search is only one single image, while both are linked with some
multimodal product pages. We replace the missing image or text
with grey pixels or an empty string and introduce an indicator X
to tell the existence of each modality. We replicate our model for
both source and target pairs sharing the same parameters, as in
Fig. 2(b). We �rst feed the source pair (w8 , v8 ) to our model, our
image encoder, text encoder, and multimodal fusion return three
embeddings at their corresponding [CLS] respectively. With 3 sim-
ple linear transformations, we get three normalized embeddings
6(v8 ), 5 (w8 ), and ⌘(w8 , v8 ). Similarly, we can get the image em-
bedding 6(v9 ), text embedding 5 (w9 ), and multimodal embedding
⌘(w9 , v9 ) for the target pair. If a source pair is linked with a target
pair, we assume any existing modality from the source would be
highly correlated with every existingmodality from the target. Thus
we compute the similarity score between any pair of source and
target embedding from the text, image, or multimodal perspective
respectively as the follows:
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In total, there are 9 cross-modal combinations, resulting in 9 simi-
larity matrices within each batch. We de�ne our Omni-Retrieval
loss as the sum of the contrastive loss over the 9 similarities:
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where D and E refers to the modality of image, text, or multimodal,
and XD8 indicates if the modality D of the 8-th input pair exists or
not, which works like a gate function to turn on/o� the contrastive
learning for each pair.

Yu, et al.

found the naive masked patch regression is not helpful in multi-
modal pre-training. In this work, we disregard the reconstruction
of each masked region, but instead recover the holistic image signal
at vcls token. We �rst follow [12, 42] to use a larger masking ratio
of 50% (instead of 15% as in [5, 25, 36]). The masked patches are
replaced with grey pixels. Our supervision is provided by another
view of the original intact input image. While MaskFeat [41] used
Histograms of Oriented Gradients (HOG) as the supervision for
visual pre-training, we rely on the more discriminative signals from
ClusterFit [43] and GrokNet [4] to extract additional two views of
the raw image. Between the two, [43] provides the clustering prob-
ability 2 (v) while [4] extracts the pool5 embedding A (v) (feature
output from the 5-th Conv Block). Correspondingly, we propose
two MIM tasks but sharing the same objective base:

LMIM (\ ) = E(w,v)⇠⇡3\ (vm |v\m,w),
where 3\ is de�ned as follows.

(1)Masked Image Modeling Feature Regression (MIM-fr)
MIM-fr learns to regress the multimodal transformer’s output at
v8 cls to the pool5 embedding from GrokNet, i.e., A (v). Speci�cally,
we apply an FC layer to convert its hidden output into a vector
q\ (v8 cls) of the same dimension as GrokNet’s pool5. Then we
apply L2 regression on the mean square error between the two:
3\ (vcls) |v\m,w) = kq\ (vcls) � A (v)k22.

(2) Masked Image Modeling KL-Divergence (MIM-kl) MIM-
kl applies the soft label of ClusterFit probability[43] as the supervi-
sion signal, which is the softmax from ClusterFit output formatting
the distribution of clusters 2̃ (v). We project the multimodal trans-
former’s output at v8 cls to the same distribution space k\ (v8 cls)
with softmax. We aim to distill the intact knowledge from Cluster-
FIT into CommerceMM, by minimizing the KL divergence between
the two distributions: 3\ (vcls |v\m,w) = k⇡ ! (2̃ (v) | |k\ (vcls)k.
Image-Text Contrastive Learning (ITC) Following [19], we add
an image-text contrastive loss between the visual and textual em-
beddings right before feeding them into the multimodal fusion
module. It aims to align the two modalities into the same space
before fusion. Speci�cally, we project the textual embedding w8 cls

and visual embedding at v8 cls to a normalized lower-dimensional
representations via two linear transformations 5 and 6. The simi-
larity of the text w8 and the image v9 is then measured by the dot
product of

B (w8 , v9 ) = 5\ (w8 cls))6\ (v8 cls)
We apply contrastive learning to bring the matched image-text
pairs in the embedding space closer than the unmatched ones as
follows:
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where g is a learned temperature parameter.
Image-Text Matching (ITM) In ITM, the inputs are a paired
sentence and image and the output is a binary label ~ 2 {0, 1},
indicating if each input pair is a match. We extract the hidden
output of wcls at the last layer of multimodal fusion to represent
the fused representation of both modalities, then feed it into an
FC layer followed by a sigmoid function to predict a single score
between 0 and 1. We denote the output score as >\ (w, v). During

pre-training, we sample a positive or negative pair (w, v) from the
dataset ⇡ at each step. The negative pair is created by replacing
the image or text in a paired sample with a randomly-selected one
from other samples. Following [19], when ITC is applied, we could
sample the hard negative pairs from ITC’s computed similarity
matrix B (w8 , v9 ). The incorporation of those hard negatives makes
ITM a harder task, which is more bene�cial for the pre-training [27].
We apply binary cross entropy for this loss:

LITM (\ ) = �E(w,v)⇠⇡ [~ log>\ (w, v) + (1�~) log(1�>\ (w, v))]) .

3.3 Cross-Pair Pre-training: Omni Retrieval
As in Fig. 1, besides image-text pairs, there are also a huge amount
of cross-modal and cross-pair commerce data. We formulate such
data as two pairs, where we denote the source pair as (w8 , v8 ) and
the target pair as (w9 , v9 ). Note one ofw and v (in the source/target
pair) could be missing in some case. For example, the source for
search query is only one single sentence, and the source for visual
search is only one single image, while both are linked with some
multimodal product pages. We replace the missing image or text
with grey pixels or an empty string and introduce an indicator X
to tell the existence of each modality. We replicate our model for
both source and target pairs sharing the same parameters, as in
Fig. 2(b). We �rst feed the source pair (w8 , v8 ) to our model, our
image encoder, text encoder, and multimodal fusion return three
embeddings at their corresponding [CLS] respectively. With 3 sim-
ple linear transformations, we get three normalized embeddings
6(v8 ), 5 (w8 ), and ⌘(w8 , v8 ). Similarly, we can get the image em-
bedding 6(v9 ), text embedding 5 (w9 ), and multimodal embedding
⌘(w9 , v9 ) for the target pair. If a source pair is linked with a target
pair, we assume any existing modality from the source would be
highly correlated with every existingmodality from the target. Thus
we compute the similarity score between any pair of source and
target embedding from the text, image, or multimodal perspective
respectively as the follows:
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In total, there are 9 cross-modal combinations, resulting in 9 simi-
larity matrices within each batch. We de�ne our Omni-Retrieval
loss as the sum of the contrastive loss over the 9 similarities:
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where D and E refers to the modality of image, text, or multimodal,
and XD8 indicates if the modality D of the 8-th input pair exists or
not, which works like a gate function to turn on/o� the contrastive
learning for each pair.

Omni Retrieval

4) Image-Text Contrastive Learning (ITC)
5) Image-Text Matching (ITM)

Image-Text Pre-training + Modality Randomization

Pre-training and Fine-tuning ExperimentsIntroduction
At Meta, nearly every post related to commerce is multimodal.
- Marketplace post is made of one or several views of a product with its product description
- Shop product listing is made of the product images and detailed specifics describing the 

product, e.g., title, attribute, size, material, etc.
- Influencers upload their fashion posts to Instagram with captions and hashtags. 

We introduce Commerce MultiModal Representation (CommerceMM), a large-scale 
pre-trained model for joint multimodal commerce embedding at Facebook. 

Users could use text query to do product search. Some users tag the relevant products when 
uploading their multimodal media. On product page, there could be multiple views of products. 
While those medias are of different type (text, multimodal, image), they are linked with the 
same product. 

Cross-modal and Cross-pair Data

We follow the pre-training + fine-tuning training regime. Our pre-training data is made of:
- 50M Catalog Posts
- 52M Marketplace Posts
- 50M Cross-Modal Cross-Pair Data

- IG and FB Shops text search queries with clicked product.
- IG and FB posts where a product is tagged on the post.


