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ABSTRACT

Recently, the example-based super-resolution method has
been extensively studied due to its vivid perception. Howev-
er, this kind of method directly transfers the high-frequency
details of the examples to the low-resolution image, incurring
false structures and over-sharpness around the texture region-
s. In this paper, the problem in the example-based method
is investigated from an analytic discussion. Then we propose
a super-resolution method that reconstructs sharp edges us-
ing the redundancy properties. The super-resolution problem
is formulated as a unified regularization scheme which adap-
tively emphasizes the importance of high-frequency residuals
in structural examples and scale invariant fractal property in
textural regions. The experimental results show that the high-
lights of our method exist in the enhanced visual quality with
sharp edges, natural textures and few artifacts.

Index Terms— Super-resolution, fractal analysis, self-
example, gradient enhancement

1. INTRODUCTION

Super-resolution (SR) techniques overcome the limitations of
the imaging system without the need for additional hardware
and find increasing applications in digital TV, movie restora-
tion and video surveillance. Generally, super-resolution refers
to the process of obtaining higher-resolution images from sev-
eral lower-resolution ones with fractional-pixel displacements
between images. Accordingly, the research of single image
super-resolution is developed to estimate the high-resolution
(HR) image from only one low-resolution (LR) image. The
current single image based SR methods can be divided in-
to three categories: the interpolation-based SR method, the
reconstruction-based SR method and the example-based SR
method.

The interpolation-based approaches like bi-linear and bi-
cubic are commonly used in real-time super-resolution tasks.
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However, they are inclined to produce blurry and jaggy effect-
s. To well preserve the sharpness of edge structures, direction-
al interpolation methods are recently proposed, such as edge
adaptive NEDI[1], iterative curvature based interpolation[2]
and auto-regression based interpolation[3].

Reconstruction-based method is proposed to estimate the
super-resolution result as an inverse procedure of a SR-to-LR
degradation process. Since many HR images may produce
the same LR images using the degradation model, the prior
of the original HR image is needed. The local smoothness
prior of gradient is commonly used to keep the piece-wise s-
mooth gradient surface[4]. As human eyes are more sensitive
to edges, many prior models have been developed to achieve
image gradient enhancement. Usually, the statistics of local
gradient field is used for image upsampling[5]. To enhance
the sharpness of local gradient, the concept of gradient profile
was proposed in [6] and the reconstruction based on the sta-
tistical profile transformation between LR and SR achieved
better SR results with faster speed. To achieve comparable
sharpness enhancement of local gradient in even shorter time,
the work in [7] exploited a patch-by-patch transformation to
enhance the gradient map.

Compared with the interpolation-based methods and
reconstruction-based methods, which depend on priors to es-
timate the missing details of LR images, the example-based
methods are intensively studied in the last decade, which take
efforts to fill in the missing high-frequency band from the ex-
ternal database of the example patches. Usually, the exam-
ple patches are decomposed into their smoothed version and
the residual high-frequency band[8, 9, 10], where the former
ones are used for sample matching and the latter ones for fill-
ing the missing information. However, the filled-in examples
would produce fairly noisy SR results[8] if they are of low
relevance to the LR image content. To take advantage of self-
similarity, some recent works proposed to construct the ex-
ample database from the input LR image itself[11, 12], which
is promising to produce sharp and fine edges, but the wrongly
hallucinated textures are meanwhile introduced.

In this paper, we propose a unified super-resolution
framework that merges the gradient regularization into self-



example synthesis. This framework emphasizes the impor-
tance of both high-frequency residuals in structural examples
and scale invariant fractal property in textural regions. As
compared with current reconstruction-based SR methods, in-
stead of recovering the gradient map statistically in texture re-
gions, we employ the fractal invariance property[13] to adap-
tively obtain a good estimation of the gradient map from a
geometrical viewpoint.

The reminder of our paper is organized as follows: Sec-
tion 2 discusses the problems of the example-based methods
from an analytic viewpoint. Section 3 proposes a unified S-
R framework that adaptively emphasizes the importance of
both high-frequency residuals in structural examples and s-
cale invariant property in textural regions. And in Section 4,
the proposed super-resolution approach is compared with the
state-of-the-art super-resolution methods. Finally, the conclu-
sion of this work is given in Section 5.

2. EXAMPLE-BASED SUPER-RESOLUTION IN
TEXTURE AND STRUCTURE REGIONS

The example-based methods aim to fill in the high-frequency
band of the SR image. The choice of the example database
is of great importance, as the examples that are irrelevant to
the image content would make the SR result noisy[8]. To
overcome this problem, there are currently two ways to make
example-based method more practical. The first way is to seg-
ment the input image into different parts, and perform exam-
ple synthesis on them using the most related databases[10].
However, the requirement of accurate segmentation and se-
lection of dataset makes the method complicate, usually in-
volving the users’ interaction[10, 15]. In addition, the strong
reliance on numerous external databases makes the method
hard to obtain general application.

The second way is to exploit self-similarity across differ-
ent scales, performing the hallucination using the database
extracted from the input itself[11, 12]. As most singularity

Fig. 1: Correlation coefficients for true structures and phase recon-
structed structures[14].

Fig. 2: Phase invariance in Gabor scale space.

Fig. 3: 4X results of ”Koala”. (a) Bi-cubic. (b) Fattal 11[12]

structures such as corners and lines are very similar to them-
selves upon successive magnification with small factors, the
missing high-frequency information of the required size can
be predicted from the input image itself through iterative scal-
ing. During each up-sampling stage, the local small window
of the smoothed version of current input LR image constructs
the database for the low-frequency patch matching. Then the
residual high-frequency contents of the matched patch at the
finer scales are used to fill in the missing high-frequency band
of the up-sampled image at the coarser scales. As the local-
ized matching is more accurate and considerably faster than
searching matches in a large external database, it opens up a
new direction in the example-based methods.

However, self-similarity is still a problematic universal as-
sumption. The scale invariance only holds accurately for the
singularities like edges, corners and contour structures, but
not for the textures. As we know, phases encode the essen-
tial structures in an image. As shown in Figure 1, the corre-
lation of phase-only reconstructions follows very closely the
true correlation between the original structures[14]. There-
fore, we investigate the invariance of phase structures in scale
space to analyze the performance of example-based SR meth-
ods in structural regions and textural regions. In Figure 2, we
use a log Gabor scale space to observe the self-similarity of
phase structure across scales, where λ denotes the scale and
x locates the pixel position. In the structural regions marked
with a red circle, the phases remain constant within a large



scale space range. In contrast, the invariance of phases can be
observed only in rather a small scale space range in the textu-
ral region, which is located with yellow circle. As a result, a
strong redundancy of repetitive image contents can be found
in structural regions across different scales, which is consis-
tent with the assumption of self-example SR methods. But it
is not a stable case in the textural regions since the phases will
change a lot beyond a small scale range. Figure 3 gives such
effects. As can be seen, the self-example based method[12]
is able to present sharp structural edges compared with bi-
cubic, however, the textural fur region is added with false line
artifacts.

3. SELF-EXAMPLE BASED SUPER-RESOLUTION
WITH FRACTAL-BASED GRADIENT

ENHANCEMENT

In the reconstruction-based SR methods, as above-mentioned,
gradient plays an important to obtain an enhanced visual per-
ception. Generally, a statistical gradient transformation[5, 6,
4, 7] is used for estimating the gradient map of the SR image.
Although the SR results are fairly encouraging, they still suf-
fer the loss of details in the texture parts. The reason is that the
gradient statistics focuses on preserving edges while leaving
relatively ”smooth” texture regions untouched. In [13], the
scale invariance of fractal features in the local gradient field
is exploited to obtain reliable reconstruction of the gradient
map, rather than directly modeling a statistical transformation
of the gradient itself. As compared with example-based SR
method, this method is highlighted in achieving more vivid
textures, as shown in the red rectangles in Figure 4. Howev-
er, the proposed parametric reconstruction model [13] cannot
accurately recover the high-frequency components of varied
edge structures due to unknown anti-aliasing operation on LR
image and the potential biased estimates when compared with
example-based method[12], as shown in the yellow rectangles

Fig. 4: 4X results of ”Child face”. (a) Fattal 11[12]. (b) Xu 12[13].

Fig. 5: Our SR scheme.

in Figure 4.
Motivated by the complementary advantages of self-

example based SR method and reconstruction-based SR
method using invariant fractal features, in this paper, we set
up a unified framework which aims to preserve sharp edges
and meanwhile reproduce vivid textures. The whole scheme
is drawn in Figure 5. Given the input LR image I0, we exploit
the local self-similarities to upsample I0 iteratively,

Y0(I0)
s1→ Y1

s2→ · · · si→ Yi
si+1→ Yi+1

si+2→ · · ·→Yout, (1)

where Yi is the i-th upsampled image, si is the small mag-
nification factor for the i-th stage. Different from [11, 12],
Yi+1 is no longer directly gotten by the redundancy of multi-
ple self-examples in our scheme. The SR result is the optimal
solution to the following function,

Yi+1 = argmin
Y
‖(Y ∗ f) ↓ −Yi‖

+λ1 ‖Y −E(Yi)‖+ λ2 ‖grad(Y )− F(grad(Yi))‖ , (2)

where

F(grad(Yi(y)) = β
‖grad(Yi(y))‖

‖grad(Yi(y))α‖+ ε
grad(Yi(y))

α. (3)

In (2) and (3), f is the empirical blurring kernel that is usual-
ly described as a Gaussian kernel, ’grad’ denotes the gradient
map, E(·) is the self-example based up-scaler for each small
magnification factor si+1[10, 12], F(·) is the gradient trans-
formation operator, in which two parameters α and β keep
the scale invariance of fractal dimension and fractal length of
local gradients[13]. Coefficients λ1,2 control the weights of
the intensity and gradient regularization.

As formulated in (2), the first term enforces the recon-
struction constraint describing the SR→LR degradation pro-
cess, i.e., the smoothed and down-sampled version of the esti-
mated HR image should be consistent with its LR image. The
second term imposes the regularization constraint on intensi-
ty domain, so that Yi+1 is able to reconstruct the fine edges
from self-examples. And the third term introduces similarity
restraints between Yi+1’s gradient field and the enhanced Yi’s
gradient field.



(a) Fattal 11 (b) Ours

(c) Xu 12 (d) Ours
Fig. 6: Comparisons of 4X results among Fattal 11[12], Xu 12[13]
and ours.

Different from the traditional gradient enhancement mod-
els [4, 5, 6, 7], which dominantly focuses on edge sharpening,
the fractal-based gradient recovery in (3) can achieve both
detail enhancement and edge sharpening. Especially for the
texture parts, the gradient regularization in (2) is effective in
restraining the over-smoothness and false artifacts. As can
be seen in Figure 6(a) and 6(b), more texture details are pre-
sented using our method. In addition, the regularization term
using self-examples in (2) promotes the proposed scheme in
overcoming the drawback shared in the reconstruction-based
methods that the sharpened edges would appear coarse, as
shown in the lip part and the chin part of Figure 6(c). This
is because of the blurry effects during interpolation before
gradient enhancement. Instead, such ill-effects would disap-
pear in our framework. The main reason is that the redun-
dancy of self-examples across scales provides sufficient high-
frequency band for the reconstruction of fine-scale structures,
which can be further enhanced by the fractal-based gradient
recovery, as shown in Figure 6(d).

4. EXPERIMENTS AND DISCUSSIONS

To demonstrate the performance of the proposed method, we
compare our approach with the state-of-art methods. In the
experiments, the Gaussian kernel f in (1) is a 7×7 mask with
deviation 0.8, the image patch is set to be 5× 5, the searching
window of examples has the size of size 10× 10, and λ1 and
λ2 are empirically selected to be 3 and 0.18i in the i-th stage,

which are acceptable in general case.
In Figure 7, our method is compared on ”Einstein” with

the recent reconstruction-based methods. More fine line
structures are presented in our scheme, as those lines are re-
covered with high-frequency information from self-examples,
thus avoiding being blurred by the initial interpolation. Figure
8 gives another comparison on ”chip” with the self-example
based SR methods. Due to the gradient regularization, our
edges look sharper and meanwhile kick out jaggy effect, as
compared with [11].

Table 1: RMS/SSIM values of different methods on the child
face

Method RMS/SSIM Method RMS/SSIM
Bi-cubic 15.847/0.705 Freeman02[8] 23.728/0.576
ICBI[?] 21.654/0.624 Fattal11[12] 24.065/0.594

Fattal07[5] 23.713/0.624 Xu12[13] 22.141/0.620
Shan08[4] 18.265/0.681 Ours 21.119/0.602

Figure 9 presents the visual results of ”Child”. To our
knowledge, ”Child” is the only public available image having
both ground truth and SR results of all the testing method-
s, thus the RMS (Root Mean Square) and SSIM (Structural
SIMilarity) values are computed only on this image. As list-
ed in Table I, the interpolation-based methods like Bi-cubic,
ICBI and Shan081 have better performance in both RMS and
SSIM as they emphasize on the consistency with the LR in-
put, while the example-based methods have larger RMS val-
ues due to their heavy dependence on the database which has
no constraint on consistency. Our approach, yields a lower
RMS and higher SSIM value than the other example-based
methods, as we take the gradient-based reconstruction model
into consideration. Due to the gradient enhancement in our
scheme, the proposed method is able to present clearer and
sharper edges around the face, as compared with [13]. Mean-
while, the hat details appear move vivid and visible compared
with the others.

For validating the robustness of our method, more com-
parisons of ”Can” and ”Wheel” are presented in Figure 10.

5. CONCLUSION

In this paper, we propose a single image SR framework
that enforces fractal-based gradient regularization into self-
example synthesis. While local self-examples provide the S-
R result with the fine line structures in the intensity field, the
fractal-based gradient regularization contributes to the artifact
revision and detail enhancement. Imposing the constraints on
both intensity and gradient field, we are able to get a promis-
ing SR result with both sharp edges and enhanced textures. In

1The SR technique of Shan08 combines the interpolation and
reconstruction-based methods.



Fig. 7: Comparisons of 4X results on ”Einstein” with the reconstruction-based methods[4, 13].

Fig. 8: Comparisons of 4X results on ”Chip” with the example-based methods[12, 11].

Fig. 9: Comparisons of 4X results on ”Child” using different methods.

future works, we will compute the regularization coefficients
according to the kind of image patch, including structural im-
age patch and textural image patch, making the SR method
more adaptive to the extensive image contents.
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